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Motivation: the damped 1-d wave equation

Consider the wave equation with a damping term a(x) > 0,

U — Uxx + a(x)uy =0 for x € (0,1), t>0

u(0,t) = u(l,t) = for t >0, 1
u(x,0) = 10(x) for x € (0, 1) (1)
v'(x,0) = u(x) for x € (0,1)

It is easy to see that the energy

1 1
E(t):/o ]ut(x,t)2dx—i—/0 s (x, £) P

decays in time. In fact, under some conditions on a(x), there exist
constants C,w such that

E(t) < Ce“"E(0), for all solutions.

The optimal value of w = w(a) is known as the decay rate.



Motivation: the damped 1-d wave equation

E(t)<C et

0 \ 1

damping a(x)
The decay rate is

w(a) = inf{w : IC(w) > 0 s.t. |Ju(t)| < Cllu(0)] e,

for every finite energy solution. It depends on the damping term

a(x).



Motivation: the damped 1-d wave equation

An equivalent system representation

{y/:AYJrBy, t>0,
Y(O):)/OEH,

where H = H} x L?(0,1), A: D(A) C H — H skewadjoint,
B : H — H bounded

() (2 0) =5 )

Therefore E(t) = ||y(t)||?, and we are interested in approximating
the best w such that

Iy ()12, < Ce*t|ly(0)||3,, for all solutions.



Motivation: the damped 1-d wave equation

A natural characterization of this decay rate is through the
spectrum of the underlying operator A. In fact, if A is an
eigenvalue with associated eigenfunction ¢(x), then

At

u(x,t) = e*p(x)

is a solution that decays as the real part of A\. Therefore,

w(a) = sup Re(A) = p(a),
Aeo(A)

This last quantity p(a) is known as the spectral abcissa.



w(a) > p(a)

E(t)<C e®t

decay rate: w(a)
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spectral abcissa: pu(a)




Motivation: the damped 1-d wave equation

When a € BV(0, 1) both the spectral abcissa and the decay rate
are the same (Cox-Zuazua, 93). The main idea is to prove that the
eigenfunctions constitute a Riesz basis of the energy space.

Similar questions arise in other damped one-dimensional models
(Schrodinger, beam, etc.) and in higher dimensions, where the
spectral abcissa also plays a role (Lebeau, 96).

Main question: Find a numerical approximations of 1(a)

Difficulties:

© It requires an approximation of the whole spectra, and not
only a finite number of eigenvalues.

@ The underlying operator is not skew-adjoint (or selfadjoint).



A general setting

Let H be a Hilbert space, A: D(A) — H unbounded skew adjoint
operator and B : H — H bounded,

with
Re < By,y ><0.

Under this setting we can consider wave, beam or Schrodinger
type models in particular.

For some of these models, specially in 1-d, there exist results on
the characterization of the decay rate with the spectral abcissa.



A first natural approach: the finite element method

Spectrum of the FEM approximation of the 1-d damped wave
equation a(x) = Xx(0.25,0.75)(x)- (Re (\) = —1 as [A| = o0)
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Convergence for a finite number of eigenvalues (Fix 73,
Bamberger-Osborn 73, Vainnikko 70)
Approximation of the decay rate in 2d: (Asch-Lebeau 99)



Adding numerical viscosity

Numerical viscosity recover the exponential decay of discrete
approximations (Ramdani, Takahashi, Tucsnak 07)
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The projection method

Idea: Project the eigenvalue problem in the finite dimensional
vector space generated by the first N eigenfunctions of the
unperturbed skew-adjoint operator.

Let (Vik)keN* be the orthonormal basis of eigenfunctions of A.

HN = span{ Vk}keZ;\*, CH

where Z3, = {k € Z*, |k| < N} and PN : H — HN the associated
orthogonal projection.
Find A € C such that there exists a solution WN ¢ HNV, WN £ 0

of the system
PN(A+ BYWN = axwN, (2)



Numerical evidences of the approximation
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Some examples

Approximation of a Dirac at x = 0.5
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Some examples

Influence of the position of the damping
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Some examples

Influence of the number of intervals
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Some examples

Indefinite dampings
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Some examples

Remark: 1-d Schrodinger and plate models have a similar
behavior.
Consider the 2-d wave equation.
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Some examples
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Some examples

2-d wave equation.
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Some examples

An example in Asch-Lebeau (99), solved with finite elements,
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Main result

Theorem Assume that the following hypotheses are satisfied:

H1 A: D(A) C H — H is skew-adjoint with simple eigenvalues
{Aj}jez=. (not for 2d problems)

H2 The eigenvalues of A satisfy an asymptotic gap
Ajg1 = Aj| >8>0, forall j € Z*.

(Not for the 2-d wave equation in square Ay = iTv k2 + [2)
H3 [1Bl[ln < M1
H4 The eigenvectors of A+ B, {U;}jecz+ constitute a Riesz basis
of H, i.e. there exists constants m(B), M(B) > 0 such that

2

mB) Y gl < |> gy < M(B)ZICJ\Z, {c} € P(0).

J J



Then, if {;}jez~ are the eigenvalues of A+ B and {I/JN}J'Ez*N those
of PN(A+ B),

M(B)
m(B)

mjin |VZ,V —vj| < C(||Bl) e(B,r), forall|p|<N-—r

M(B)
m(B)

min |vp — VJN\ < C(]IB]) e(B,r), forall|p|<N-—r
J

where
2
e(B,r):miax Z | < BV}, V; > |
Jili—j|>r

Remark Roughly speaking, this last quantity measures how
diagonal is the matrix

(< BV, V; >)iJ'

Nondiagonal terms must be small to have good estimates.



Remark For the 1-d damped wave, Schrodinger and beam models
we have

1
< BV, V;>= / a(x) sin(imx) sin(jrx)dx,
0

and £(B, r) can be estimated by the L!-norm of a'(x).

Remark In practice we only have estimates for all the frequencies
but the largest 2r.



Last eigenvalues are not well approximated: a(x) = 8x(0.1,0.5)(x)
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Approximation with 50 frequencies (red) and 100 frequencies
(blue). Only the last few frequencies are not well approximated.



Sketch of the proof

The idea is to adapt the proof by Osborn (65) that consider the
convergence of a finite number of eigenvalues.

Step 1. Basic estimates (Osborn 65). For each eigenvalue \; of A
we consider
G=A=N<IBl}

A ¢ @ Eigenvalue A
+* A Eigenvalue A+B

% Eigenvalue P(A+B)




Step 2. As the eigenfunctions of A+ B constitute a Riesz basis,
we can write any eigenvector of PV(A 4 B) as a linear
combination of them,

= Z apjlUj, apjeC.
JEZL*
where WPN is the eigenvector of PNV(A + B) associated to 1//,\’.
Then, after some algebra
> ap UM () —vj) = [PM(A+B)— (A+B)W) = (1-PN)BW)Y
JEL*
Taking norms and using the Riesz basis estimates,

M(B)

N N
@H(/ — PY)BW, ||,  forall [p| < N

min \V;,V —vj| <
J



Step 3. We have to estimate,
(1 = PMYBW ||,
Hipothesis (H2) on the asymptotic spectral gap implies
W,;V ~ Vp, for p large but still [p| < N

since Fourier coefficients decay very fast.
This implies that basically

(1 = PMYBW |1y ~ (I(1 = PY)BV |1, Pl < N

Note that if B is diagonal this is zero. Therefore, it is natural to
bound this quantity by a deviation

S(B,r):miax Z | < BV, V; > |?

Jili—j|>r

but only when p < N —r.



Step 4 So far we have estimated

minlvf =1, 1ol <N

This means that there is an eigenvalue of A+ B close to one of
PN(A + B). But, is there an eigenvalue of A+ B that is not close

to an eigenvalue of PY(A + B)? You can argue on a finite number
of eigenvalues

A @ Eigenvalue A
* A Eigenvalue A+B

¥ Eigenvalue P(A+B)




Conclusions

@ The projection method provides a uniform convergence of the
spectra, up to a finite number of high frequencies, for a large
class of bounded perturbation of unbounded skew-adjoint
operators.

@ The Theorem only covers a particular class of systems but
there are numerical evidences that indicate its validity in more
general situations (the 1-d damped wave equation).

© The main drawback is that it requires the knowledge of the
eigenfunctions of the unperturbed operator. For higher
dimensions in general domains this is a difficult problem.



