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Introduction

A/ 1 D
NN~

Compact metric graph

@ Set of points (vertices) connected by segments (edges),
@ equipped with a metric structure (equipped with a distance),

@ composed by a finite number of vertices and edges of finite
length.
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Let &4 be a compact metric graph. In J# = [?(¥,C) equipped
with the norm || - ||, we consider the bilinear Schrédinger equation

{@W@)=—A¢U%+MHB¢H% te(0,7), (BSE)

»(0) = 0 T>0.
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Let &4 be a compact metric graph. In J# = [?(¥,C) equipped
with the norm || - ||, we consider the bilinear Schrédinger equation

{/aﬂ/}(t) = —AyP(t) + u(t)By(t), te(0,7), (BSE)

$(0) = ¢° T >0.

@ —A is a Laplacian equipped with self-adjoint boundary
conditions,

@ B is a bounded symmetric operator in JZ,
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Let &4 be a compact metric graph. In J# = [?(¥,C) equipped
with the norm || - ||, we consider the bilinear Schrédinger equation

{@W@)=—A¢U%+MHB¢HL te(0,7), (BSE)

$(0) = 1° T>0.

@ —A is a Laplacian equipped with self-adjoint boundary
conditions,

@ B is a bounded symmetric operator in JZ,
o u € L?((0, T),R) is the control function for T > 0.
Let I'Y be the unitary propagator of the (BSE).

Aim: Study the controllability of the (BSE) in a suitable M C 7
according to the boundary conditions and structure of ¢.

vt p? e M [t = (|92, 3T, u = Tt =2
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Boundary conditions for D(—A)

e Neumann-Kirchhoff (AVK) in v (internal vertex)
f is continuous in v,

NK) :
W) {ZQGN(V)%(ngQ(v):o,

where N(v) is the set of edges containing v and

oe(v) = 1 if the direction of e is ingoing in v,
oe(v) = —1 if the direction of e is outgoing in v.
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Boundary conditions for D(—A)

e Neumann-Kirchhoff (AVK) in v (internal vertex)
f is continuous in v,

NK) :
W) {ZQGN(V)%(v)gXQ(v):o,

where N(v) is the set of edges containing v and

oe(v) = 1 if the direction of e is ingoing in v,
oe(v) = —1 if the direction of e is outgoing in v.

e Dirichlet (D) or Neumann boundary conditions () in
the external vertices.
of

(D): f(v) =0, WN): a(v) =0.
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Some Literature for ¢ = [a,b] and a < b

@ Local Exact Controllability and well-posedness: Beauchard
and Laurent (2010).
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Chambrion, Mason, Sigalotti and Boscain (2009); Boscain,
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@ Simultaneous Local Exact Controllability: Morancey (2014).

@ Simultaneous Global Exact Controllability: Morancey and
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Peculiarities of the problem

Let {Ak}ken be the (ordered) spectrum of —A.
If 4 =][a,b] fora<bh — linlf\]|>\k+1 - X| >0, (1)
€

— well-posedness and local exact controllability.
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Peculiarities of the problem

Let {Ak}ken be the (ordered) spectrum of —A.
If 4 =][a,b] fora<bh — limI;I|>\k+1_)\k| > 0,
€
— well-posedness and local exact controllability.

1)i t teed but
If ¢ is generic — ( ) is not guaranteed bu
infren [Akronsr — Ak| >0

(N is the number of edges of ¢). We need more. Let d > 0.

Assumptions A.1(d): There exists C > 0 so that

C
[ Akg1 — k| > ek Vk € N.
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Let n >0, d > 0 and (-,-) be the scalar product in .7. We call
5= D(|—A]z), s>0.

Assumptions A.2(7, d):
e We have B : H — HZ and

B : Hyt"Hd — HHmtd 2
@ There exists C > 0 such that
C .
|<¢f’B¢1>’2j2Tn’ vjeN.
@ For every j, k,I,m € N such that \; — Ay — A/ + Ay =0,
(0j, Boj) — (¢k, Bow) — (&1, Bér) + (Pm, Bdm) # 0.
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Well-posedness and global exact controllability
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Well-posedness

Theorem (D.)

Let the couple (—A, B) verify Assumptions A.1(d) and
Assumptions A.2(n,d) with d +n € [1,3/2). The well-posedness
of the (BSE) is guaranteed in H;,J”’er.
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Well-posedness

Theorem (D.)

Let the couple (—A, B) verify Assumptions A.1(d) and
Assumptions A.2(n,d) with d +n € [1,3/2). The well-posedness
of the (BSE) is guaranteed in Héﬂﬁd,

The following interpolation proposition is crucial for the
well-posedness of the (BSE).

Proposition (D.)

If ¢ is a graph equipped with Dirichlet and Neumann type
boundary conditions, then

H?;Sl — Hé NH3*SY for s € [0,1/2).
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Global exact controllability

Theorem (D.)

Let the couple (—A, B) verify Assumptions A.1(d), i.e there exists
C > 0 so that

C
[Akg1 — Ak| > el Vk € N.

If (—A, B) satisfies Assumptions A.2(n,d) with d +n € [1,3/2),

then the (BSE) is globally exactly controllable in H;+d+n, ie.

vl 02 € Hy T 9t = 19, 3T > 0, w e L((0, T),R)
= Tyl =92
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Global exact controllability

Theorem (D.)

Let the couple (—A, B) verify Assumptions A.1(d), i.e there exists
C > 0 so that

C
| Akt1 — Ak| > el Vk € N.

If (—A, B) satisfies Assumptions A.2(n,d) with d +n € [1,3/2),

then the (BSE) is globally exactly controllable in H;+d+", ie.

Wl 0% € gt [t e = 1192 loe, 3T >0, u € L((0, T),R)
= Tyl =92

Under suitable assumptions, the well-posedness and the global
exact controllability can also be guaranteed when n+ d € (0,7/2)
in HZ¢ with e € [max{n + d, 1},7/2).
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Examples: global exact controllability

Let Bl2(e,) = (x — L1)* and Bl2(,) = 0 with k # 1.
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€3
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A~ /62 J { IASaFBRAS
ea | and VL;/Lj, algebraic irrational numbers,
€1

Neumann-Kirchhoff Dirichlet
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Examples: global exact controllability

Let Blj2(ey) = (x — L1)* and Blj2(e,) = O with k # 1.
For almost every {L;} <4 such that

€3
1,{L;};j<a} are Q-linearly independent
A~ /62 J { IRCI RS
ea | and VL;/Lj, algebraic irrational numbers,
€1 Neumann-Kirchhoff Dirichlet
the (BSE) is globally exactly controllable in H;+E with € € (0,1/2).

Other examples:

CoH— 0O
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Energetic controllability
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Energetic controllability

According to the structure of ¢, we can exhibit some
eigenfunctions {¢;}jen of —A.

Ly =1Ly

€1

Let vjle, = —¢jle, be so that )|, is the j-th eigenfunction of
Apy = —D¢, V€ D(Ap) = H?(e1,C) N Hy(er, C).

The function ¢; is an eigenfunction of —A on &. We define

— 2
S = span{p|| | € N}L )

The spectrum of —A in A is explicit and it is possible to verify
the validity of Assumptions A.1.

supp(y;) = €1 Uesg
/@A Pj

14/20



e If (—A, B) satisfies Assumptions A.1(d) and Assumptions

A.2(d,n) in S for suitable n > 0 and d > 0, then the global
exact controllability can be guaranted in

HZE 2.
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e If (—A, B) satisfies Assumptions A.1(d) and Assumptions
A.2(d,n) in S for suitable n > 0 and d > 0, then the global
exact controllability can be guaranted in

HZE 2.

o As {pj}jen C H, for every s > 0, we have

Yor, om, 3T >0, uel?((0,T),R) = T%v = pm.

o Let {Xk}keN be the spectrum of —A in .

(BSE) is energetically controllable
with respect to {Ax been.
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Examples: energetic controllability

€3 €2 2
: €1 B|L2(€1) = (I -L 1) )
€4 B|L2(ek) = O, k 7& 1.
€5 &6
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Examples: energetic controllability

es
&/61 Blio(ey) = (& =L 1)?,

64/\ Blr2ey) =0,  k#1L
€6
[

If L =Lj, Vk,j <6,
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Examples: energetic controllability

e €2 2
3 ) €1 B|L2(e1) = (‘T -L 1) »
€4 B|L2(ek) = O, k 7& 1.
€5 &6

If L =Lj, Vk,j < 6,

— (BSE) is energetically controllable with respect to
{ k272 }
—5 )
Ll keN
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Peculiarity of the proof
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Local exact controllability

The local controllability in a neighborhood of ¢1 in H with s >0
corresponds to local surjectivity of the map

rO¢; - 12((0, T),R) — H,
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Local exact controllability

The local controllability in a neighborhood of ¢1 in H with s >0
corresponds to local surjectivity of the map

M1 1 2((0, T),R) — Hj, o1 = oilon Mor),
k

which is equivalent to the local surjectivity of the map
QK1 = <¢k7 rL7I'¢1>7 k € N.

Generalized Inverse Function Theorem =- surjectivity of
v = (dya(u=0))- v

T .
a(v) = —i /O V(s)e i MWsds () Bay).  (2)
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Solvability of the moment problem (2) = Beurling's Theorem.
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Solvability of the moment problem (2) = Beurling's Theorem.

infren |)\k+2N+1 - )\k‘ > 0, N solvability in
|)‘k+1 - )\k| > Ck_da X(dvn) C €2~

Peculiarities of the proof:

o Common approach: Well-posedness in Hé = moment
problem in #2 = not enough if

inf — )
Jnf [Akr — Al # 0

e New approach: Interpolation features = well-posedness in

Hé+d+" = moment problem in X(d,n).
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Thank you for your attention!
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