Global exact controllability of the bilinear Schrödinger equation on compact graphs

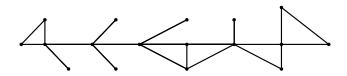
Alessandro Duca

Workshop on PDE's Modelling & Theory, 09-10th May 2018, Monastir.

Well-posedness and global exact controllability

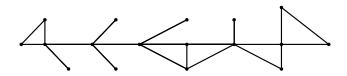
Energetic controllability

Peculiarity of the proof



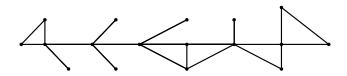
Compact metric graph

• Set of points (vertices) connected by segments (edges),



Compact metric graph

- Set of points (vertices) connected by segments (edges),
- equipped with a metric structure (equipped with a distance),



Compact metric graph

- Set of points (vertices) connected by segments (edges),
- equipped with a metric structure (equipped with a distance),
- composed by a finite number of vertices and edges of finite length.

$$\begin{cases} i\partial_t \psi(t) = -\Delta \psi(t) + u(t)B\psi(t), & t \in (0, T), \\ \psi(0) = \psi^0 & T > 0. \end{cases}$$
(BSE)

$$\begin{cases} i\partial_t \psi(t) = -\Delta \psi(t) + u(t)B\psi(t), & t \in (0, T), \\ \psi(0) = \psi^0 & T > 0. \end{cases}$$
(BSE)

• $-\Delta$ is a Laplacian equipped with self-adjoint boundary conditions,

$$\begin{cases} i\partial_t \psi(t) = -\Delta \psi(t) + u(t)B\psi(t), & t \in (0, T), \\ \psi(0) = \psi^0 & T > 0. \end{cases}$$
(BSE)

- $-\Delta$ is a Laplacian equipped with self-adjoint boundary conditions,
- B is a bounded symmetric operator in \mathcal{H} ,

$$\begin{cases} i\partial_t \psi(t) = -\Delta \psi(t) + u(t)B\psi(t), & t \in (0, T), \\ \psi(0) = \psi^0 & T > 0. \end{cases}$$
(BSE)

- $-\Delta$ is a Laplacian equipped with self-adjoint boundary conditions,
- B is a bounded symmetric operator in \mathcal{H} ,
- $u \in L^2((0, T), \mathbb{R})$ is the control function for T > 0.

$$\begin{cases} i\partial_t \psi(t) = -\Delta \psi(t) + u(t)B\psi(t), & t \in (0, T), \\ \psi(0) = \psi^0 & T > 0. \end{cases}$$
(BSE)

- $-\Delta$ is a Laplacian equipped with self-adjoint boundary conditions,
- B is a bounded symmetric operator in \mathscr{H} ,
- $u \in L^2((0, T), \mathbb{R})$ is the control function for T > 0.

Let Γ_t^u be the unitary propagator of the (*BSE*).

$$\begin{cases} i\partial_t \psi(t) = -\Delta \psi(t) + u(t)B\psi(t), & t \in (0, T), \\ \psi(0) = \psi^0 & T > 0. \end{cases}$$
(BSE)

- $-\Delta$ is a Laplacian equipped with self-adjoint boundary conditions,
- B is a bounded symmetric operator in \mathcal{H} ,
- $u \in L^2((0, T), \mathbb{R})$ is the control function for T > 0.

Let Γ_t^u be the unitary propagator of the (*BSE*).

Aim: Study the controllability of the (*BSE*) in a suitable $\mathcal{M} \subset \mathscr{H}$ according to the boundary conditions and structure of \mathscr{G} .

$$\forall \psi^1, \psi^2 \in \mathcal{M} : \|\psi^1\| = \|\psi^2\|, \ \exists T, \ u \implies \Gamma_T^u \psi^1 = \psi^2.$$

Boundary conditions for $D(-\Delta)$

• Neumann-Kirchhoff (\mathcal{NK}) in v (internal vertex)

$$(\mathcal{NK}): \qquad \begin{cases} f \text{ is continuous in } v, \\ \sum_{e \in \mathcal{N}(v)} \sigma_e(v) \frac{\partial f}{\partial x_e}(v) = 0, \end{cases}$$

where N(v) is the set of edges containing v and

 $\begin{cases} \sigma_e(v) = 1 \text{ if the direction of } e \text{ is ingoing in } v, \\ \sigma_e(v) = -1 \text{ if the direction of } e \text{ is outgoing in } v. \end{cases}$

Boundary conditions for $D(-\Delta)$

• Neumann-Kirchhoff (\mathcal{NK}) in v (internal vertex)

$$(\mathcal{NK}): \qquad \begin{cases} f \text{ is continuous in } v, \\ \sum_{e \in \mathcal{N}(v)} \sigma_e(v) \frac{\partial f}{\partial x_e}(v) = 0, \end{cases}$$

where N(v) is the set of edges containing v and

$$\begin{cases} \sigma_e(v) = 1 \text{ if the direction of } e \text{ is ingoing in } v, \\ \sigma_e(v) = -1 \text{ if the direction of } e \text{ is outgoing in } v \end{cases}$$

• Dirichlet (D) or Neumann boundary conditions (N) in the external vertices.

$$(\mathcal{D}): f(v) = 0, \qquad (\mathcal{N}): \frac{\partial f}{\partial x}(v) = 0.$$

• Local Exact Controllability and well-posedness: Beauchard and Laurent (2010).

- Local Exact Controllability and well-posedness: Beauchard and Laurent (2010).
- (Simultaneous and non) Global Approximate Controllability: Chambrion, Mason, Sigalotti and Boscain (2009); Boscain, Caponigro, Chambrion and Sigalotti (2012).

- Local Exact Controllability and well-posedness: Beauchard and Laurent (2010).
- (Simultaneous and non) Global Approximate Controllability: Chambrion, Mason, Sigalotti and Boscain (2009); Boscain, Caponigro, Chambrion and Sigalotti (2012).
- Simultaneous Local Exact Controllability: Morancey (2014).

- Local Exact Controllability and well-posedness: Beauchard and Laurent (2010).
- (Simultaneous and non) Global Approximate Controllability: Chambrion, Mason, Sigalotti and Boscain (2009); Boscain, Caponigro, Chambrion and Sigalotti (2012).
- Simultaneous Local Exact Controllability: Morancey (2014).
- Simultaneous Global Exact Controllability: Morancey and Nersesyan (2014).

Let $\{\lambda_k\}_{k\in\mathbb{N}}$ be the (ordered) spectrum of $-\Delta$.

If
$$\mathscr{G} = [a, b]$$
 for $a < b \implies \inf_{k \in \mathbb{N}} |\lambda_{k+1} - \lambda_k| > 0$, (1)

 \implies well-posedness and local exact controllability.

Let $\{\lambda_k\}_{k\in\mathbb{N}}$ be the (ordered) spectrum of $-\Delta$.

If
$$\mathscr{G} = [a, b]$$
 for $a < b \implies \inf_{k \in \mathbb{N}} |\lambda_{k+1} - \lambda_k| > 0$, (1)

 \implies well-posedness and local exact controllability.

If
$$\mathscr{G}$$
 is generic $\implies \begin{cases} (1) \text{ is not guaranteed but} \\ \inf_{k \in \mathbb{N}} |\lambda_{k+2N+1} - \lambda_k| > 0 \end{cases}$

(*N* is the number of edges of \mathscr{G}). We need more.

Let $\{\lambda_k\}_{k\in\mathbb{N}}$ be the (ordered) spectrum of $-\Delta$.

If
$$\mathscr{G} = [a, b]$$
 for $a < b \implies \inf_{k \in \mathbb{N}} |\lambda_{k+1} - \lambda_k| > 0$, (1)

 \implies well-posedness and local exact controllability.

If
$$\mathscr{G}$$
 is generic $\implies \begin{cases} (1) \text{ is not guaranteed but} \\ \inf_{k \in \mathbb{N}} |\lambda_{k+2N+1} - \lambda_k| > 0 \end{cases}$

(N is the number of edges of \mathscr{G}). We need more. Let $d \ge 0$.

Assumptions A.1(d**):** There exists C > 0 so that

$$|\lambda_{k+1} - \lambda_k| \ge \frac{C}{k^d}, \quad \forall k \in \mathbb{N}$$

Let $\eta > 0$, $d \ge 0$ and $\langle \cdot, \cdot \rangle$ be the scalar product in \mathscr{H} .

Let $\eta > 0$, $d \ge 0$ and $\langle \cdot, \cdot \rangle$ be the scalar product in \mathscr{H} . We call $H^s_{\mathscr{G}} := D(|-\Delta|^{\frac{s}{2}}), \qquad s \ge 0.$

Let $\eta > 0$, $d \ge 0$ and $\langle \cdot, \cdot \rangle$ be the scalar product in \mathscr{H} . We call $H^{s}_{\mathscr{G}} := D(|-\Delta|^{\frac{s}{2}}), \qquad s \ge 0.$

Assumptions A.2(η , d):

• We have
$$B: H^2_{\mathscr{G}} \to H^2_{\mathscr{G}}$$
 and
 $B: H^{2+\eta+d}_{\mathscr{G}} \to H^{2+\eta+d} \cap H^2_{\mathscr{G}}.$

• There exists C > 0 such that

$$|\langle \phi_j, B\phi_1 \rangle| \ge \frac{C}{j^{2+\eta}}, \qquad \forall j \in \mathbb{N}.$$

• For every $j, k, l, m \in \mathbb{N}$ such that $\lambda_j - \lambda_k - \lambda_l + \lambda_m = 0$, $\langle \phi_j, B\phi_j \rangle - \langle \phi_k, B\phi_k \rangle - \langle \phi_l, B\phi_l \rangle + \langle \phi_m, B\phi_m \rangle \neq 0$.

Well-posedness and global exact controllability

Energetic controllability

Peculiarity of the proof

Well-posedness

Theorem (D.)

Let the couple $(-\Delta, B)$ verify Assumptions A.1(d) and Assumptions A.2(η , d) with $d + \eta \in [1, 3/2)$. The well-posedness of the (BSE) is guaranteed in $H_{d}^{2+\eta+d}$.

Well-posedness

Theorem (D.)

Let the couple $(-\Delta, B)$ verify Assumptions A.1(d) and Assumptions A.2(η , d) with $d + \eta \in [1, 3/2)$. The well-posedness of the (BSE) is guaranteed in $H_{\mathscr{G}}^{2+\eta+d}$.

The following interpolation proposition is crucial for the well-posedness of the (BSE).

Proposition (D.)

If \mathscr{G} is a graph equipped with Dirichlet and Neumann type boundary conditions, then

$$H^{3+s_1}_{\mathscr{G}} = H^3_{\mathscr{G}} \cap H^{3+s_1}$$
 for $s_1 \in [0, 1/2)$.

Global exact controllability

Theorem (D.)

Let the couple $(-\Delta, B)$ verify Assumptions A.1(d), i.e there exists C > 0 so that

$$|\lambda_{k+1}-\lambda_k|\geq \frac{C}{k^d}, \quad \forall k\in\mathbb{N}.$$

If $(-\Delta, B)$ satisfies Assumptions A.2 (η, d) with $d + \eta \in [1, 3/2)$, then the (BSE) is globally exactly controllable in $H^{2+d+\eta}_{\mathscr{G}}$, i.e.

$$\begin{aligned} \forall \psi^1, \psi^2 \in H^{2+\eta+d}_{\mathscr{G}} : \ \|\psi^1\|_{\mathscr{H}} &= \|\psi^2\|_{\mathscr{H}}, \ \exists T > 0, \ u \in L^2((0,T),\mathbb{R}) \\ &\Rightarrow \ \Gamma^u_T \psi^1 = \psi^2. \end{aligned}$$

Global exact controllability

Theorem (D.)

Let the couple $(-\Delta, B)$ verify Assumptions A.1(d), i.e there exists C > 0 so that

$$|\lambda_{k+1}-\lambda_k|\geq \frac{C}{k^d}, \quad \forall k\in\mathbb{N}.$$

If $(-\Delta, B)$ satisfies Assumptions A.2 (η, d) with $d + \eta \in [1, 3/2)$, then the (BSE) is globally exactly controllable in $H^{2+d+\eta}_{\mathscr{G}}$, i.e.

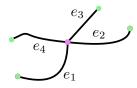
$$\begin{aligned} \forall \psi^1, \psi^2 \in H^{2+\eta+d}_{\mathscr{G}} : \ \|\psi^1\|_{\mathscr{H}} &= \|\psi^2\|_{\mathscr{H}}, \ \exists T > 0, \ u \in L^2((0,T),\mathbb{R}) \\ &\Rightarrow \ \Gamma^u_T \psi^1 = \psi^2. \end{aligned}$$

Remark

Under suitable assumptions, the well-posedness and the global exact controllability can also be guaranteed when $\eta + d \in (0, 7/2)$ in $H^{2+\epsilon}_{\mathscr{G}}$ with $\epsilon \in [\max\{\eta + d, 1\}, 7/2)$.

Let $B|_{L^2(e_1)} = (x - L_1)^4$ and $B|_{L^2(e_k)} = 0$ with $k \neq 1$.

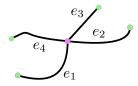
Let
$$B|_{L^2(e_1)} = (x - L_1)^4$$
 and $B|_{L^2(e_k)} = 0$ with $k \neq 1$.



For almost every $\{L_j\}_{j\leq 4}$ such that $\{1, \{L_j\}_{j\leq 4}\}$ are Q-linearly independent and $\forall L_j/L_k$ algebraic irrational numbers,

• Neumann-Kirchhoff • Dirichlet

Let
$$B|_{L^2(e_1)} = (x - L_1)^4$$
 and $B|_{L^2(e_k)} = 0$ with $k \neq 1$.

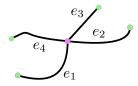


For almost every $\{L_j\}_{j\leq 4}$ such that $\{1, \{L_j\}_{j\leq 4}\}$ are Q-linearly independent and $\forall L_j/L_k$ algebraic irrational numbers,

• Neumann-Kirchhoff • Dirichlet

the (*BSE*) is globally exactly controllable in $H^{4+\epsilon}_{\mathscr{G}}$ with $\epsilon \in (0, 1/2)$.

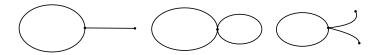
Let
$$B|_{L^2(e_1)} = (x - L_1)^4$$
 and $B|_{L^2(e_k)} = 0$ with $k \neq 1$.



For almost every $\{L_j\}_{j\leq 4}$ such that $\{1, \{L_j\}_{j\leq 4}\}$ are Q-linearly independent and $\forall L_j/L_k$ algebraic irrational numbers,

• Neumann-Kirchhoff • Dirichlet

the (*BSE*) is globally exactly controllable in $H^{4+\epsilon}_{\mathscr{G}}$ with $\epsilon \in (0, 1/2)$. Other examples:



Well-posedness and global exact controllability

Energetic controllability

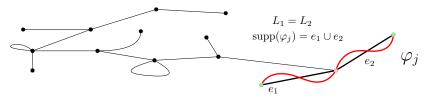
Peculiarity of the proof

Energetic controllability

According to the structure of \mathscr{G} , we can exhibit some eigenfunctions $\{\varphi_i\}_{j\in\mathbb{N}}$ of $-\Delta$.

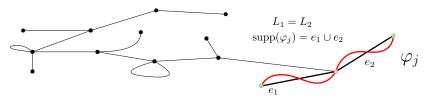
Energetic controllability

According to the structure of \mathscr{G} , we can exhibit some eigenfunctions $\{\varphi_i\}_{j\in\mathbb{N}}$ of $-\Delta$.



Energetic controllability

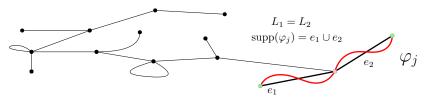
According to the structure of \mathscr{G} , we can exhibit some eigenfunctions $\{\varphi_j\}_{j\in\mathbb{N}}$ of $-\Delta$.



Let $\varphi_j|_{e_1} = -\varphi_j|_{e_2}$ be so that $\varphi_j|_{e_1}$ is the j-th eigenfunction of $A_D\psi = -\Delta\psi, \quad \forall \psi \in D(A_D) = H^2(e_1, \mathbb{C}) \cap H^1_0(e_1, \mathbb{C}).$

Energetic controllability

According to the structure of \mathscr{G} , we can exhibit some eigenfunctions $\{\varphi_j\}_{j\in\mathbb{N}}$ of $-\Delta$.

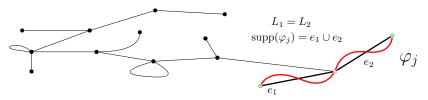


Let $\varphi_j|_{e_1} = -\varphi_j|_{e_2}$ be so that $\varphi_j|_{e_1}$ is the j-th eigenfunction of $A_D\psi = -\Delta\psi, \quad \forall \psi \in D(A_D) = H^2(e_1, \mathbb{C}) \cap H^1_0(e_1, \mathbb{C}).$

The function φ_j is an eigenfunction of $-\Delta$ on \mathscr{G} .

Energetic controllability

According to the structure of \mathscr{G} , we can exhibit some eigenfunctions $\{\varphi_j\}_{j\in\mathbb{N}}$ of $-\Delta$.



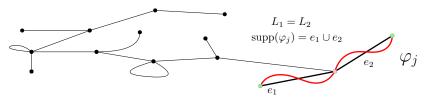
Let $\varphi_j|_{e_1} = -\varphi_j|_{e_2}$ be so that $\varphi_j|_{e_1}$ is the j-th eigenfunction of $A_D\psi = -\Delta\psi, \quad \forall \psi \in D(A_D) = H^2(e_1, \mathbb{C}) \cap H^1_0(e_1, \mathbb{C}).$

The function φ_i is an eigenfunction of $-\Delta$ on \mathscr{G} . We define

$$\widetilde{\mathscr{H}} := \overline{\operatorname{span}\{\varphi_I \mid I \in \mathbb{N}\}}^{L^2}.$$

Energetic controllability

According to the structure of \mathscr{G} , we can exhibit some eigenfunctions $\{\varphi_j\}_{j\in\mathbb{N}}$ of $-\Delta$.



Let $\varphi_j|_{e_1} = -\varphi_j|_{e_2}$ be so that $\varphi_j|_{e_1}$ is the j-th eigenfunction of $A_D\psi = -\Delta\psi, \quad \forall \psi \in D(A_D) = H^2(e_1, \mathbb{C}) \cap H^1_0(e_1, \mathbb{C}).$

The function φ_j is an eigenfunction of $-\Delta$ on \mathscr{G} . We define

$$\widetilde{\mathscr{H}} := \overline{\operatorname{span}\{\varphi_I \mid I \in \mathbb{N}\}}^{L^2}.$$

The spectrum of $-\Delta$ in $\hat{\mathscr{H}}$ is explicit and it is possible to verify the validity of Assumptions A.1.

• If $(-\Delta, B)$ satisfies Assumptions A.1(d) and Assumptions A.2(d, η) in $\widetilde{\mathscr{H}}$ for suitable $\eta > 0$ and $d \ge 0$, then the global exact controllability can be guaranted in

$$H^{2+\eta+d}_{\mathscr{G}}\cap\widetilde{\mathscr{H}}.$$

If (-Δ, B) satisfies Assumptions A.1(d) and Assumptions
 A.2(d, η) in *ℋ* for suitable η > 0 and d ≥ 0, then the global exact controllability can be guaranted in

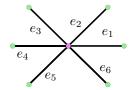
$$H^{2+\eta+d}_{\mathscr{G}}\cap\widetilde{\mathscr{H}}.$$

• As $\{\varphi_j\}_{j\in\mathbb{N}} \subset H^s_{\mathscr{G}}$ for every s > 0, we have $\forall \varphi_l, \varphi_m, \exists T > 0, u \in L^2((0, T), \mathbb{R}) \implies \Gamma^u_T \varphi_l = \varphi_m.$ If (-Δ, B) satisfies Assumptions A.1(d) and Assumptions
 A.2(d, η) in ℋ for suitable η > 0 and d ≥ 0, then the global exact controllability can be guaranted in

$$H^{2+\eta+d}_{\mathscr{G}}\cap\widetilde{\mathscr{H}}.$$

- As $\{\varphi_j\}_{j\in\mathbb{N}} \subset H^s_{\mathscr{G}}$ for every s > 0, we have $\forall \varphi_l, \varphi_m, \exists T > 0, u \in L^2((0, T), \mathbb{R}) \implies \Gamma^u_T \varphi_l = \varphi_m.$
- Let $\{\widetilde{\lambda}_k\}_{k\in\mathbb{N}}$ be the spectrum of $-\Delta$ in $\widetilde{\mathscr{H}}$. $\implies \begin{cases} (BSE) \text{ is energetically controllable} \\ \text{with respect to } \{\widetilde{\lambda}_k\}_{k\in\mathbb{N}}. \end{cases}$

Examples: energetic controllability

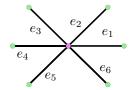


$$B|_{L^{2}(e_{1})} = (x - L_{1})^{2},$$

$$B|_{L^{2}(e_{k})} = 0, \qquad k \neq 1.$$

J.

Examples: energetic controllability

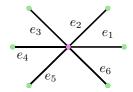


$$B|_{L^{2}(e_{1})} = (x - L_{1})^{2},$$

$$B|_{L^{2}(e_{k})} = 0, \qquad k \neq 1.$$

$$\text{ If } L_k = L_j, \qquad \forall k, j \le 6,$$

Examples: energetic controllability



$$B|_{L^{2}(e_{1})} = (x - L_{1})^{2},$$

$$B|_{L^{2}(e_{k})} = 0, \qquad k \neq 1.$$

If
$$L_k = L_j$$
, $\forall k, j \leq 6$,

 $\implies (BSE) \text{ is energetically controllable with respect to} \\ \left\{ \frac{k^2 \pi^2}{L_1^2} \right\}_{k \in \mathbb{N}}.$

Introduction

Well-posedness and global exact controllability

Energetic controllability

Peculiarity of the proof

 $\Gamma_T^{(\cdot)}\phi_1: L^2((0,T),\mathbb{R}) \to H^s_{\mathscr{G}},$

$$\Gamma_T^{(\cdot)}\phi_1: L^2((0,T),\mathbb{R}) \to H^s_{\mathscr{G}}, \qquad \Gamma_T^u\phi_1 = \sum_k \phi_k \langle \phi_k, \Gamma_T^u\phi_1 \rangle,$$

$$\Gamma_T^{(\cdot)}\phi_1: L^2((0,T),\mathbb{R}) \to H^s_{\mathscr{G}}, \qquad \Gamma_T^u\phi_1 = \sum_k \phi_k \langle \phi_k, \Gamma_T^u\phi_1 \rangle,$$

which is equivalent to the local surjectivity of the map

$$\alpha_{k,1} = \langle \phi_k, \Gamma_T^u \phi_1 \rangle, \qquad k \in \mathbb{N}.$$

$$\Gamma_T^{(\cdot)}\phi_1: L^2((0,T),\mathbb{R}) \to H^s_{\mathscr{G}}, \qquad \Gamma_T^u\phi_1 = \sum_k \phi_k \langle \phi_k, \Gamma_T^u\phi_1 \rangle,$$

which is equivalent to the local surjectivity of the map

$$\alpha_{k,1} = \langle \phi_k, \Gamma^u_T \phi_1 \rangle, \qquad k \in \mathbb{N}.$$

Generalized Inverse Function Theorem \Rightarrow surjectivity of $\gamma := (d_u \alpha(u = 0)) \cdot v$

$$\gamma_{k,1}(v) = -i \int_0^T v(s) e^{-i(\lambda_1 - \lambda_k)s} ds \langle \phi_k, B\phi_1 \rangle.$$
(2)

$$\begin{cases} \inf_{k\in\mathbb{N}} |\lambda_{k+2N+1} - \lambda_k| > 0, \\ |\lambda_{k+1} - \lambda_k| > Ck^{-d}, \end{cases} \Rightarrow \begin{cases} \text{solvability in} \\ X(d,\eta) \subseteq \ell^2. \end{cases}$$

$$\begin{cases} \inf_{k\in\mathbb{N}} |\lambda_{k+2N+1} - \lambda_k| > 0, \\ |\lambda_{k+1} - \lambda_k| > Ck^{-d}, \end{cases} \Rightarrow \begin{cases} \text{solvability in} \\ X(d,\eta) \subseteq \ell^2. \end{cases}$$

Peculiarities of the proof:

$$\begin{cases} \inf_{k\in\mathbb{N}} |\lambda_{k+2N+1} - \lambda_k| > 0, \\ |\lambda_{k+1} - \lambda_k| > Ck^{-d}, \end{cases} \Rightarrow \begin{cases} \text{solvability in} \\ X(d,\eta) \subseteq \ell^2. \end{cases}$$

Peculiarities of the proof:

Common approach: Well-posedness in H³_𝒢 ⇒ moment problem in ℓ² ⇒ not enough if

$$\inf_{k\in\mathbb{N}}|\lambda_{k+1}-\lambda_k|\neq 0.$$

$$\begin{cases} \inf_{k\in\mathbb{N}} |\lambda_{k+2N+1} - \lambda_k| > 0, \\ |\lambda_{k+1} - \lambda_k| > Ck^{-d}, \end{cases} \Rightarrow \begin{cases} \text{solvability in} \\ X(d,\eta) \subseteq \ell^2. \end{cases}$$

Peculiarities of the proof:

 Common approach: Well-posedness in H³_𝒢 ⇒ moment problem in ℓ² ⇒ not enough if

$$\inf_{k\in\mathbb{N}}|\lambda_{k+1}-\lambda_k|\neq 0.$$

• New approach: Interpolation features \Rightarrow well-posedness in $H^{2+d+\eta}_{\mathscr{G}} \Rightarrow$ moment problem in $X(d, \eta)$.

Thank you for your attention!