
Topologycal sensitivity analysis method:
Theory and Applications

Maatoug Hassine

UR Analyse et Contrôle des EDP, FSM - Université de Monastir
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Introduction

Model problem:

Find the optimal domain solution to

min
Ω∈E

j(Ω)

where

j(Ω) = J(Ω, uΩ),

uΩ is the solution to a PDE defined in Ω,

E is the set of admissible domains.
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Topological Sensitivity analysis

Main idea : studying the variation of the
design function j with respect to the
creation of a small hole ωz,ε = z + εω at
the point z ∈ Ω, ω ⊂ Rd fixed domain.

ωε

Γ

Ω

It leads to an asymptotic expansion of the form

j(Ω\ωz,ε)− j(Ω) = f (ε)δj(z) + o(f (ε)).

where

f (ε): is a scalar function known explicitly and goes to zero with ε
limε→0 f (ε) = 0.

δj : topological gradient, called also topological sensitivity.

In order to minimize the cost function, the best location to insert a small hole in
Ω is where δj is most negative.

In fact if δj(z) < 0, we have j(Ω\ωz,ε) < j(Ω) for small ε.
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Topological Sensitivity analysis

In practice :

The optimal domain : It is obtained through insertion of some holes in the
initial one

Oopt = Ω\∪mk=1ωk

We build a sequence of geometries {Ωk}k≥0 with Ω0 = Ω.

The new geometry Ωk+1 is obtained by inserting some holes ωk in Ωk ;
Ωk+1 = Ωk\ωk :

• The location of ωk is given by the local minima of the topological gradient δj
• The shape of ωk is defined by a level set curve of δj

ωk = {x ∈ Ωk , such that δj(x) ≤ ck < 0} ,

where ck is chosen in such a way that the cost function j decreases as most as
possible.
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Topological Sensitivity analysis

History :

• It is introduced by Schumacher [1995] as “numerical approach” in structural
mechanics using circular holes and Neumann b.c.

• Sokolowski [1999]: extended this idea to more general function using the
adjoint method (case circular holes and Neumann b.c.).

• Masmoudi [2001]: introduced the Dirichlet condition case and given a more
general approach to compute the topological gradient.

The topological sensitivity analysis has been derived for different linear operators:
Elasticity, Laplace, Stokes, Helmholtz, Maxwell, ....

Recently, we have extended the mathematical analysis for Navier-Stokes

operator.
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Outline

1 Topological sensitivity analysis for the Stokes and Navier-Stokes
operators w.r.t. the presence of a Dirichlet geometric perturbation

2 Applications :

Dynamic aeration process.
Geometric control problem.
Optimal shape design of tubes in a cavity.

3 Topological sensitivity analysis for the Stokes system with Neumann
condition

4 Application : Detection of small flaws locations in moulded objects.

5 Conclusion
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Topological Sensitivity analysis

The Stokes system with Dirichlet condition:

In the perturbed domain Ω\ωz,ε,
the velocity uε and the pressure pε satisfy


− div (2νD(uε)) +∇pε = G in Ω\ωz,ε

div uε = 0 in Ω\ωz,ε

uε = 0 on Γd

(2νD(uε)− pεI )n = gn on Γn

uε = 0 on ∂ωz,ε Dirichlet condition

where D(u) = 1/2(∇u +∇uT ) is the rate of deformation tensor, ν is the fluid
viscosity, G is a given body force and gn is a given boundary datum.

ωε

Γ

Ω
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The Stokes operator with Dirichlet condition

Asymptotic expansion:

Let j be the design function

j(Ω\ωz,ε) = Jε(uε),

where Jε is defined on H1(Ω\ωz,ε) verifying the following assumption H:

1 J0 is differentiable with respect to u, its derivative being denoted by DJ0(u).

2 There exists a real number δJ and a scalar function f : IR+ −→ IR+ such
that ∀ ε ≥ 0, Jε(uε)− J0(u0) = DJ0(u0)(uε − u0) + f (ε)δJ + o(f (ε)).

Remark: We need to distinguish: d = 2 and d = 3.
If d = 3, the fundamental solution to the Stokes equations is given by

U(y) =
1

8πνr

(
I + ere

T
r

)
, P(y) =

y

4πr 3
, with r = ||y ||, er = y/r .

If d = 2, The fundamental solution to the Stokes equations is given by

U(y) =
1

4πν

(
− log(r)I + ere

T
r

)
, P(y) =

y

2πr 2
.
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The Stokes operator with Dirichlet condition

Theorem: 3D case
If the assumption H holds, the function j has the asymptotic expansion

j(Ω\ωz,ε)− j(Ω) = ε
[(
−
∫
∂ω

η(y) ds(y)
)
.v0(z) + δJ

]
+ o(ε).

v0 is the solution to the associated adjoint problem in Ω.

η ∈ H−1/2(∂ω)d is solution to the next boundary integral equation,∫
∂ω

U(x − y) η(y) ds(y) = −u0(z), ∀x ∈ ∂ω.

u0 is the solution to the Stokes equations in Ω.
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The Stokes operator with Dirichlet condition

3D - Spherical case:
In the particular case where ω = B(0, 1), the density η is given by

η(y) = −3ν

2
u0(z), ∀y ∈ ∂ω.

Theorem: 3D - spherical case

If ω = B(0, 1), under the assumption H, we have

j(Ω\ωz,ε)− j(Ω) = ε
[
6πν u0(z).v0(z) + δJ

]
+ o(ε).

2D case:

Theorem: 2D case
If the assumption H holds, the function j has the asymptotic expansion

j(Ω\ωz,ε)− j(Ω) =
−1

log(ε)

[
4πν u0(z).v0(z) + δJ

]
+ o
( −1

log(ε)

)
.
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The Navier-Stokes operator with Dirichlet condition

Topological sensitivity analysis for the Navier-Stokes operator

Theorem: 3D case

‖ uε − u0 −W ‖L2(0,T ; H1(Ωz, ε))≤ cε,

where the leading term W = (W 1,W 2,W 3) ∈ H1(Ωz, ε)3 is defined by

W j(x , t) = U j(
x − z

ε
).u0(z , t), ∀(x , t) ∈ R3\Oz,ε×]0, T [, (1)

with U j is solution to the following Stokes exterior problem
− ν∆U j +∇P j = 0 in R3\O,

div U j = 0 in R3\O,
U j −→ 0 at ∞,
U j = −ej on ∂O.

(2)

Here {ej}j=1,2,3 is the canonical basis of R3.
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The Navier-Stokes operator with Dirichlet condition

Topological sensitivity analysis for the Navier-Stokes operator

Theorem: 3D case (M.H and R. Malek, 2017)

The shape function j satisfies the asymptotic expansion

j(Ω \ Oz, ε) = j(Ω) + ε
[ ∫ T

0
w0(z , t).MOv0(z , t)dt + δJ

]
+ o(ε), (3)

where
− MO is the matrix defined by

MO ij =

∫
∂O
ηji (y)ds(y), 1 ≤ i , j ≤ 3.

− v0 is the solution to the following associated adjoint problem
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The Navier-Stokes operator with Dirichlet condition

Topological sensitivity analysis for the Navier-Stokes operator

Theorem: 2D case

‖ uε − u0 −W ‖L2(0,T ;H1(Ω\ωz,ε))≤
−c

log(ε)

where W (x , t) =
4πν

log(ε)
U(x − z) u0(z , t), ∀(x , t) ∈ Ω\ωz,ε×]0, T [.

The asymptotic expansion :

Theorem: 2D case (M.H and R. Malek, 2017)

j(Ω\ωz, ε) = j(Ω)+
−1

log(ε)

[
4πν

∫ T

0
u0(z , t) v0(z , t) dt+δJ

]
+o
( −1

log(ε)

)
.

where v0 is the solution to the associated adjoint problem
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APPLICATIONS

Dynamic aeration process.

Geometric control problem.

Optimal shape design of tubes in a cavity.
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I - Dynamic aeration process

Eutrophication problem:

In arid and semi-arid areas (high temperature, a neglected wind effect),
the thermic factors combined to the biological and to the chemical ones
generate a stratification process.

Main chacarterization: a poor dissolved oxygen concentration in water.
=⇒ that decrease of the water quality.

M. Hassine (UR ACEDP - FSM, Monastir) Workshop on PDE’s - Modelling & Theory May 9-10, Monastir 2018 15 / 83



Dynamic aeration process

Proposed solution: the dynamic aeration process.

Stiff gradient of temperature

 

16 18

35

27

12

7

o
27 28.5

T/  C

Z / m

(a)
(b)

Low temperature

Injector
Injector

Compressor

Air bubbles

High temperature

Epilimnion

Water well aerated

Thermocline

Medium oxygenated water

water

Poor oxygenated

    Hypolmnion

Wind

(a): Structure of a stratified lake, (b): average temperature curve during summer.

Goal: oxygenation of the water.
Idea: generate a vertical motion mixing up the water of the bottom with
that in the top.
Tools: inserting air by the means of injectors located in the bottom of the
lake.
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Dynamic aeration process

Optimization of injectors location.
Aim: Generate the best motion in the fluid with respect to the aeration
purpose.
Model:

The fluid flow is governed by the Quasi-Stokes equations.

Each injector Injk is modeled as a small hole
ωzk ,ε = zk + εωk , 1 ≤ k ≤ m having an injection velocity uk

inj .

The velocity uε and the pressure pε satisfy
αuε − ν∆uε +∇pε = F in Ω\∪mk=1ωzk ,ε

∇.uε = 0 in Ω\∪mk=1ωzk ,ε

uε = ud on Γ
uε = uk

inj on ∪mk=1 ∂ωzk ,ε,

where ν is the fluid viscosity, F is a given body force, ud is a given
boundary velocity and uk

inj is a given injection velocity on
∂ωzk ,ε, 1 ≤ k ≤ m.
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Dynamic aeration process

Criterion: we assume that a “good” lake aeration can be described by a
target velocity Ug .
The cost function Jε to be minimized is defined by

Jε(uε) =

∫
Ωm

|uε − Ug |2 dx ,

where uε is the velocity field solution to the Quasi-Stokes equations and
Ωm ⊂ Ω is the measurement domain (the top layer).

The identification problem can be formulated as:

Topological optimization problem:

min
ωzk ,ε

⊂Ω
j(Ω\ ∪mk=1 ωzk ,ε),

where j is the design function defined by

j(Ω\ ∪mk=1 ωzk ,ε) = Jε(uε),
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Dynamic aeration process

Injectors location:

The algorithm:

Initialization: choose Ω0 = Ω, and set k = 0.

Repeat until target is reached:

- solve the direct and the adjoint problems in Ωk ,
- compute the topological sensitivity δjk ,
- determine the set Hk = {x ∈ Ωk ; δjk(x) < ck < 0}, where ck is

chosen in such a way that the cost function decreases,
- set Ωk+1 = Ωk\Hk ,

k ←− k + 1.

At the kth iteration, the topological gradient δjk is given by

δjk(z) = (uk(x)− uinj) .vk(x), ∀z ∈ Ωk

where uk and vk are, respectively, solution to the direct and adjoint
problems in Ωk .
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Dynamic aeration process

Numerical results:

INRIA-MODULEF

INRIA-MODULEF

INRIA-MODULEF

INRIA-MODULEF

Initial flow

INRIA-MODULEF

INRIA-MODULEF

INRIA-MODULEF

INRIA-MODULEF

Objective flow

INRIA-MODULEF

INRIA-MODULEF

INRIA-MODULEF

INRIA-MODULEF

Obtained flow

INRIA-MODULEF

INRIA-MODULEF

INRIA-MODULEF

INRIA-MODULEF

Obtained injectors locations
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Dynamic aeration process

3D case : Numerical simulation of the aeration process

The lake geometry

Velocity field: at time 1s, 1mn and 10mn

Aerated zone: at time 1s, 1mn and 10mn
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Dynamic aeration process

3D case: Optimization of injectors location

The wanted (top) and obtained (bottom) velocities in Ωm

Obtained injectors locations
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II - Geometric control of fluid flow
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Geometric control of fluid flow

We consider an incompressible fluid in a cavity Ω
having some inlets Γi

in, 1 ≤ i ≤ n,

and some outlets Γj
out , 1 ≤ j ≤ m.

Γ

Γ

in

out

Γin

ΓoutΓin

Γout

Γin

Ω

1

1

2 2

3

4

3

Goal : Determine the optimal shape O∗ solution to

min
O⊂Ω

∫
Ωm

|uO − wobj |2dx,

where wobj is a wanted velocity field defined in a fixed zone Ωm.
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Geometric control of fluid flow

Idea: build a sequence of geometries (Ωk)k≥0 with Ω0 = Ω,
Ωk+1 = Ωk\ωk . .

=⇒ ωk is solution to
min

ωk⊂Ok

j(Ok\ωk),

Γ

Γ

in

out

Γin

ΓoutΓin

Γout

Γin

1

1

2 2

3

4

3

ω

ω

ωω

k

2

1

3

Ο k+1

Topological sensitivity method : The obstacle ωk is defined by a level
set curve of δjk

ωk = {x ∈ Ωk , such that δjk(x) ≤ ck < 0} ,

where ck is chosen in such a way that j decreases as much as possible.
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Geometric control of fluid flow

The algorithm:

Initialization: choose Ω0 = Ω, and set k = 0.

Repeat until δjk ≥ 0 in Ωk :

- solve the Stokes equations in Ωk ,
- solve the associated adjoint problem in Ωk ,
- compute the topological sensitivity δjk(x) ∀x ∈ Ωk ,
- determine the obstacle ωk ,
- set Ωk+1 = Ωk\ωk ,

k ←− k + 1.
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Geometric control of fluid flow

Test 1: Optimization of a purification tank through insertion of
obstacles.

min
O⊂Ω

∫
Ωm

|uO − wd |2dx,

where uO is the solution to the Stokes equations in O ⊂ Ω.

mΩ

Γ Γin out

u.n=0

u=(1,0,0)

u=(0,0,0)
u=(0,0,0)

u=(1,0,0)

u=(0,0,0)

The initial geometry The initial velocity field
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Geometric control of fluid flow

Numerical results: The optimal domain is obtained in only 5
iterations.

mΩ

Γ Γin out

u.n=0

u=(1,0,0)

u=(0,0,0)
u=(0,0,0)

u=(1,0,0)

u=(0,0,0)

The optimal domain The final velocity field

The optimal domain The final velocity field
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Geometric control of fluid flow

Numerical results

mΩ

Γ Γin out

u.n=0

u=(1,0,0)

u=(0,0,0)
u=(0,0,0)

u=(1,0,0)

u=(0,0,0)
0 1 2 3 4

0
5

Iteration

0.75

0.25

 1.

0.5

u 
 −

w d
o

||  
   

   
   

 ||
Ω

m

initial geometry obtened geometry variation of j

iteration 1 iteration 3 iteration 5
The topological gradient
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Geometric control of fluid flow

Test 2: Maximize the fluid flow velocity in Ωm = ∪kΩk
m ⊂ Ω.

max
O⊂Ω

∫
Ωm

|uO|2dx,

where uO is the solution to the Stokes equations in O.

outΓ
inΓ

1
Ωm

m

Ωm

Ω3
m

u=(0,0,0)

u=(0,0,0)

u=(0,0,0)

u=(0,0,0)

u=(1,0,0)
u=(1,0,0)

Ω
2

4

The initial geometry and the fixed domain Ωm
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Geometric control of fluid flow

Numerical results: The optimal domain is obtained in only 5
iterations.

The optimal domain

2D cuts of the final velocity field
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III - Optimal shape design of tubes in a cavity
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Optimal shape design

We consider an incompressible fluid in a cavity Ω having one inlet and
some outlets.
Goal: Determine the optimal shape of the tubes that connect the inlet to
the outlets of the cavity minimizing the dissipated power in the fluid.

min
O⊂Ω

∫
O
|∇uO|2dx,

with

uO is the solution to Navier-Stokes equations in O.
meas(O) = V0

Γ

Γ

Γ

Γ

ΓΓ1 1

2

2

1

2

Γin

out

out

Γout
3

Γout
4
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Optimal shape design

Test 1: One inlet, two outlets.

Γ

Γ

Γ

Γ

ΓΓ1 1

2

2

1

2

Γin

out

out

The initial geometry 2D cut of the initial velocity field

The optimal domain The obtained velocity field
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Optimal shape design

iteration 1 iteration 3 iteration 5

iteration 8 iteration 10 iteration 12
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Optimal shape design

Test 2: One inlet, four outlets.

Γ

Γ

Γ

Γ

ΓΓ1 1

2

2

1

2

Γin

out

out

Γout
3

Γout
4

The initial geometry 2D cut of the initial velocity field

The optimal domain The obtained velocity field
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Optimal shape design

iteration 2 iteration 4 iteration 6

iteration 9 iteration 13 iteration 16
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Detection of small flaws locations in moulded
objects
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Detection of small flaws locations in moulded objects

The Mould filling process: The mould filling is an industrial process used in
fabrication of the metal pieces.

The mould filling process is based on the two phases:

The Mould filling phase: simulation of the liquid/air interface.

The solidification phase: simulation of the solid/liquid interface.

=⇒ numerical simulation of two free surfaces.

Ω (t)

Γ (t)r

Γs(t)

Mould filling free surface

Input

Solid−Liquid free surface

Mould filling process

Model : based on the Navier-Stokes system and the energie equation.

Maronnier V., Picasso M., Rappaz J. (1999) and (2003)
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Detection of small flaws locations in moulded objects

Creation of bubbles of gas : During the mould filling process, gas bubbles may
be trapped by the fluid and cannot escape.

Ω

bubble 1
1

1

Γ

τP(t−  )=Patmo

(t−  )

(t−  )

P(t−  )=PP(t−  )=PP(t−  )=PP(t−  )=P
V(t−  )τ

τ

τ Ω(t)

Γ (t)

bubble 1
atmo1

1

bubble 2
P(t)=Patmo2
V(t)2

V(t)
P(t)=P

Ω

Γ
V(t+  )
P(t+  )=P

V(t+  )

bubble 2 
P(t+  )τ

τ

τ
τ

atmo1   

1   

2

2

bubble 1

(t+  )τ

(t+  )τ

Creation of bubbles of gas during the mould filling process

Some numerical simulations and experimental results showing the creation of
bubbles of gas are given in

Caboussat A., Picasso M., Rappaz J.(2005), Numerical simulation of free
surface incompressible liquid flows surrounded by compressible gas, J.
Comput. Physics, 203, 626-649.
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Detection of small flaws locations in moulded objects

Direct problem : numerical simulation of the fluid flow in the presence of some
bubbles of gas.

liquid

gas bubbles

Fluid flow model:

After the filling phase the fluid flow can be characterized by a low velocity or
a high viscosity (i.e. low Reynold number). The Stokes equations can be
used as an approximation of the full Navier-Stokes equations.

an homogeneous Neumann boundary condition on the liquid-gas interface.

For a given force g acting on Γ, the velocity Uε and the pressure Pε satisfy
− div (2νD(Uε)) +∇Pε = G in Ω\ωε

div Uε = 0 in Ω\ωε

(2νD(Uε)− PεI )n = g on Γ
(2νD(Uε)− PεI )n = 0 on ∂ωε,

where ωε is the domain occupied by the gas.
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Detection of small flaws locations in moulded objects

The inverse problem : detect the gas bubbles locations from boundary
measurement of velocities.

liquid

gas bubbles

Assumptions :

Each bubble of gas is modelled as a small hole having geometry form
ωzk ,ε = zk + εωk , 1 ≤ k ≤ m, where ε is the shared diameter and ωk ⊂ IRd

are bounded and smooth domains containing the origin.

The gas bubbles ωzk ,ε are well separated.

The inverse problem :
Given : � the prescribed boundary force g (acting on Γ),

� the measured velocity Ud on Γ.

Find : the gas bubbles locations in the mould Ω.
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Detection of small flaws locations in moulded objects

Misfit function: We use the over-specified boundary data.

For any set of bubbles ωε = ∪mk=1zk + εωk ⊂ Ω two forward problems.

Neumann problem: find (uε
N
, pε

N
) solution to

− div (2νD(uε
N

)) +∇pε
N

= G in Ω\ωε

div uε
N

= 0 in Ω\ωε

(2νD(uε
N

)− pε
N

I )n = g on Γ
(2νD(uε

N
)− pε

N
I )n = 0 on ∂ωε.

Dirichlet problem: find (uε
D
, pε

D
) solution to

− div (2νD(uε
D

)) +∇pε
D

= G in Ω\ωε

div uε
D

= 0 in Ω\ωε

uε
D

= Ud on Γ
(2νD(uε

D
)− pε

D
I )n = 0 on ∂ωε.
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Detection of small flaws locations in moulded objects

Misfit function:

The actual domain of gas is obtained (ωε = ω∗) when the misfit between the
solutions vanishes, uε

D = uε
N .

⇓

The Kohn-Vogelius function :

Eε(uε
N , u

ε
D) = 2ν ‖D(uε

N)−D(uε
D)‖2

L2(Ω\ωε) .

Such a function has two main features:

It is an energy function =⇒ we don’t need an additional regularization to
stabilize the recovery process.

We don’t need to compute the adjoint state.
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Detection of small flaws locations in moulded objects

The inverse problem:
Given the boundary force g and the measured velocity Ud :
Find the optimal location z∗k of the gas bubbles ωzk ,ε = zk + εωk , 1 ≤ k ≤ m
solution to

min
zk∈Ω
Eε(uε

N , u
ε
D),

Modelling each gas bubble ωzk ,ε as a small hole centred at zk , the inverse problem
is turned in a topological optimization one.

Topological optimization problem:

min
ωzk ,ε

∈Ω
J (Ω\ωε),

where J is a design function defined by J (Ω\ωε) = Eε(uε
N , u

ε
D) and

ωε = ∪mk=1zk + εωk .

Tools : we shall use the topological gradient method.
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Topological Sensitivity analysis

The Stokes system with Neumann condition:

In the perturbed domain Ω\ωz,ε,
the velocity uε and the pressure pε satisfy


− div (2νD(uε)) +∇pε = G in Ω\ωz,ε

div uε = 0 in Ω\ωz,ε

uε = 0 on Γd

(2νD(uε)− pεI )n = gn on Γn

(2νD(uε)− pεI )n = 0 on ∂ωz,ε Neumann condition

ωε

Γ

Ω

where D(u) = 1/2(∇u +∇uT ) is the rate of deformation tensor and I is the
d × d identity matrix.
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Topological Sensitivity analysis

Assumption H :

Jε is differentiable with respect to u, its derivative being denoted by DJε(u).

There exist a real number δJ and a real function f : IR+ −→ IR+ such that

Jε(uε)− J0(u0) = DJε(uε − u0) + f (ε)δJ + ◦(f (ε)),

lim
ε→0

f (ε) = 0.

The associated adjoint problem has a unique solution.
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Topological Sensitivity analysis

Main results : we have derived a topological Sensitivity analysis valid for

large class of cost function,

arbitrary shaped holes

Theorem : “general case”

If the cost function Jε satisfies the assumptions H, then j has the following
asymptotic expansion

j(Ω\ωz,ε) = j(Ω) + εd
(
−D(u0)(z) :MD(v0)(z) + |ω| G v0(z) + δJ

)
+ o(εd),

where
u0 solution to the Stokes equations in Ω,

v0 solution to the associated adjoint problem,

M is the Viscous Moment Tensor associated to the domain ω and the
viscosity ν.
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Topological Sensitivity analysis

The Viscous Moment Tensor: The Viscous Moment Tensor M is given by

Mpq
ij = 2ν

∫
∂ω

yi η
p,q
j (y) ds,∀1 ≤ i , j , p, q ≤ d

where yi denotes the i th component of y ∈ IRd , and ηp,q ∈ H−1/2(∂ω)d is the
solution to:

−η
p,q(y)

2
+

∫
∂ω

[(2νDy (E )(x − y)ηp,q(x))n(y)− P(x − y)ηp,q(x)n(y)] ds

= −Ip,qn(y) ∀y ∈ ∂ω,

with Ip,q ∈ IRd × IRd , 1 ≤ p, q ≤ d is the symmetric matrix defined by

Ipqij =
1

2
(δipδjq + δiqδjp), ∀1 ≤ i , j ≤ d .

Here δkl denotes the Kronecker symbol.
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Topological Sensitivity analysis

Properties of the Viscous Moment Tensor:

Proposition :

The Viscous Moment Tensor M is positive definite

Proposition :

The Viscous Moment Tensor M is symmetric in the following sens

Mpq
ij =Mqp

ij , Mpq
ij =Mpq

ji , and Mpq
ij =Mij

pq, ∀ p, q, k, l ∈ {1, ..., d}.
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Topological Sensitivity analysis

If ω = B(0, 1) the integral equation has an explicit solution

η(y) =

{
4νD(v0)y , ∀y ∈ ∂ω if d = 2,
3νD(v0)y , ∀y ∈ ∂ω if d = 3.

Then, the tensor M is given by

M = 4πνI if d = 2 or 3,

where I is the d2 × d2 identity matrix.

Corollary: “spherical case”

If ω = B(0, 1), j has the asymptotic expansion

j(Ω\ωz,ε)− j(Ω) = πεdδj(z) + o(εd).

where
δj(z) =

 −4νD(u0)(z) : D(v0)(z) + G v0(z) + δJ if d = 2,

−4νD(u0)(z) : D(v0)(z) + (4/3)G v0(z) + δJ if d = 3.
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Topological Sensitivity analysis

Cost function examples:

Proposition:

The cost function

Jε(u) =

∫
Ω\ωz,ε

|u|2 dx

satisfies the assumptions H1 and H2 with

δJ = −|ω| |u0(z)|2, z ∈ Ω

Lε(w) = 2

∫
Ω\ωz,ε

u0 w dx, ∀w ∈ Vε

L = 2u0.
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Topological Sensitivity analysis

Cost function examples:

Proposition:

The cost function

Jε(u) = 2ν

∫
Ω\ωz,ε

|D(u)|2 dx,

satisfies the assumptions H1 and H2 with

δJ = −D(u0)(z) :MD(u0)(z), z ∈ Ω

Lε(w) = 2

∫
Ω\ωz,ε

Gwdx + 2

∫
Γn

gnwdx,∀w ∈ Vε

L = 2G.
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Detection of small flaws locations in moulded objects

Sensitivity analysis for the misfit functional:

Theorem : “spherical shaped flaw”

If ω = B(0, 1) we have

J (Ωz,ε)− J (Ω) = πεdδJ (z) + o(εd),

with

2D case:

δJ (z) = 4ν[D(u0
N)(z) : D(u0

N)(z)−D(u0
D)(z) : D(u0

D)(z)]
+2G [u0

D(z)− u0
N(z)]

3D case:

δJ (z) = 4ν[D(u0
N)(z) : D(u0

N)(z)−D(u0
D)(z) : D(u0

D)(z)]
+(8/3)G [u0

D(z)− u0
N(z)].
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Detection of small flaws locations in moulded objects

The algorithms

We consider the the bi-dimensional case.

The topological gradient is given by :

δJ (z) = 4ν[D(u0
N)(z) : D(u0

N)(z)−D(u0
D)(z) : D(u0

D)(z)]
+2G [u0

D(z)− u0
N(z)].

The measurements data Ud are synthetic.

One-shot algorithm:

Solve the two direct problems: (P0
N) and (P0

D),

Compute the topological gradient δJ (z), z ∈ Ω,

Determine the negative local minima of δJ (z).

Bubbles location: Bubbles are likely to be located at spots where the
topological gradient δj is most negative.
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Detection of small flaws locations in moulded objects

Implementation:

Mould geometry: The rectangular Ω = [0, 1]× [0, 0.5] is used as a mould
filled with a viscous and incompressible fluid.

Discretization: The domain Ω is discretized by triangular mesh using a
mesh step equal to h.

The domain Ω is discretized by triangular mesh
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Detection of small flaws locations in moulded objects

Detection results: One bubble

Exact location of ω∗ = z∗ + 0.01B(0, 1) Isovalues of δj
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Detection of small flaws locations in moulded objects

Detection results: three bubbles

b3

b2

1b

Exact locations Isovalues of δj

b3

b2

1b
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Detection of small flaws locations in moulded objects

Detection results with noisy data:
We consider the case of three well-separated flaws having the same radius
r∗ = 0.02, b1 = B(z∗1 , r∗), b2 = B(z∗2 , r∗) and b3 = B(z∗3 , r∗).

b3

b2

1b

Figure: Mould containing three well-separated flaws having the same radius;
b1 = B(z∗1 , r∗), b2 = B(z∗2 , r∗) and b3 = B(z∗3 , r∗)

The data Ud is polluted by a pointwise white noise with an amplitude ranging

from 0 to 0.1.
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Detection of small flaws locations in moulded objects

Detection results with noisy data: The considered error function is given by

er(τ) =
1

3

3∑
k=1

∥∥zk
h (τ)− z∗k

∥∥
2 r∗

,

τ is the noise level,

zk
h , 1 ≤ k ≤ 3, are the computed flaw’s center.
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Figure: Variation of the error function with respect to the noise level τ ; 0%, 2%,
4%, 6%, and 8%.
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Detection of small flaws locations in moulded objects

Detection results with noisy data:

τ = 0% τ = 4%

τ = 6% τ = 8%

Figure: Isovalues of the topological gradient showing the flaw locations obtained
using different level of noise(×: exact, o: estimated).
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Detection of small flaws locations in moulded objects

Limites of the One-shot algorithm:

Sensitivity to the depth

Sensitivity to the relative position of two flaws

Effect of the relative size of two flaws

Effect of a large number of flaws
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Detection of small flaws locations in moulded objects

Sensitivity to the depth:

b

d

Figure: Mould containing three well-separated flaws having the same radius;
b1 = B(z∗1 , r∗), b2 = B(z∗2 , r∗) and b3 = B(z∗3 , r∗)
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Detection of small flaws locations in moulded objects

Sensitivity to the depth: The considered error functions:

er1(δ) =
‖zh(δ)− z∗‖

d

er2(δ) =
‖zh(δ)− z∗‖

2r∗
,

where zh is the computed flaw center.
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Figure: Variation of the relative errors er1 and er2 with respect to the
non-dimensional depth δ.
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Detection of small flaws locations in moulded objects

Sensitivity to the relative position of two flaws:

d

b2 b1

Figure: Mould Ω containing two flaws b1 = B(z∗1 , r
∗) and b2 = B(z∗2 , r

∗) having
the same radius r∗ and separated by a distance d
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Detection of small flaws locations in moulded objects

Sensitivity to the relative position of two flaws:

ρ = 6 ρ = 4

ρ = 3 ρ = 2
Figure: Isovalues of δJ showing the obtained flaw locations (×: exact, o:
estimated).
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Detection of small flaws locations in moulded objects

Sensitivity to the relative position of two flaws

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0  0.2  0.4  0.6  0.8  1

6

4

2

Figure: Values of the topological gradient δj on the line segment crossing the two
flaws centers z∗1 and z∗2 for different values of ρ = d/r∗; ρ = 2, ρ = 4 and ρ = 6.
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Detection of small flaws locations in moulded objects

Effect of the relative size of two flaws

*
b

b
1
*

2r         r1

2

Figure: Mould containing two flaws b1 = B(z∗1 , r1) and b2 = B(z∗2 , r2) separated
by a fixed distance and having a different size (radius) r1 and r2
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Detection of small flaws locations in moulded objects

Effect of the relative size of two flaws:

R = 1 R = 2

R = 3 R = 4

Figure: Isovalues of the topological gradient showing the obtained flaw locations.
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Detection of small flaws locations in moulded objects

Effect of the relative size of two flaws
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Figure: Values of the topological gradient δj on the line segment crossing the two
flaws centers z∗1 and z∗2 for different values of R = r2/r1; R = 1, R = 2, R = 3
and R = 4.
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Detection of small flaws locations in moulded objects

Effect of a large number of flaws
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Figure: Large number of flaws having the same size; bi = B(z∗i , r∗), 1 ≤ i ≤ 12.
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Detection of small flaws locations in moulded objects

Effect of a large number of flaws:
Using the one-shot algorithm :
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Detection of small flaws locations in moulded objects

Iterative algorithm:

Initialization: choose Ω0 and set k = 0.

Repeat until target is reached:

solve the two problems (P0
N) and (P0

D) in Ωk ,
compute the topological sensitivity δjk in Ωk ,

determine the set Hk =
{

x ∈ Ωk , δjk(x) ≤ ck < 0
}

,

determine the detected flaws location Sk = ∪x∈Ck
{x + 0.02 B(0, 1)},

where Ck is the set of the local minima of δjk in Hk ,
set Ωk+1 = Ωk\Sk ,
k ←− k + 1.

The constant ck depends on the most negative local minima of δjk .
In practice we have used ck = 0.8 δmin, where δmin is the most negative local
minima of δjk(z).
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Detection of small flaws locations in moulded objects

Case of a large number of flaws: using the iterative algorithm
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Topological sensitivity analysis method

Detection of plasma location in a Tokamak
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The Tokamak problem

The Tokamak: The Tokamak is an experimental machine which aims to confine
the plasma in a magnetic field to control the nuclear fusion of atoms of mass law.
The real-time reconstruction of the plasma magnetic equilibrium in a Tokamak is
a key point to access high performance regimes.

In an axisymmetric configuration, the plasma equilibrium is described by the
equation

Lψ = 0 in Ω

where L is the Grad-Shafranov operator

L = − ∂

∂r
(

1

µr

∂

∂r
)− ∂

∂z
(

1

µr

∂

∂z
)
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Introduction

The plasma equilibrium:
We denote by (r , ϕ, z) the three-dimentional cylindrical coordinates system. Since
the tokamak is an axisymmetric troidal device, we may assume that all magnetic
quantities do not depend on the troidal angle ϕ.

Γ

Ωp

Plasma
Σp

Ωv Vaccum region

The plasma equilibrium may be studied in any cross
section (r , z), named poloidal section.
It is described by the equation

Lψ = 0 in Ωv

− Ωv is the domain included between the tokamak boundary Γ
and the plasma boundary Σ, called the vacuum region.
− ψ is the poloidal magnetic flux.
− L is the Grad-Shafranov operator

L = − ∂

∂r
(

1

µr

∂

∂r
)− ∂

∂z
(

1

µr

∂

∂z
)

M. Hassine (UR ACEDP - FSM, Monastir) Workshop on PDE’s - Modelling & Theory May 9-10, Monastir 2018 77 / 83



The Tokamak problem

The Tokamak problem : We consider here the inverse problem of determining
plasma boundary Σp location from over-specified boundary data on Γ.

Γ

Ωp

Plasma
Σp

Ωv Vaccum region

Knowing a complete set of Cauchy data,
the poloidal flux ψ satisfies the system

Lψ = 0 in Ω\Ωp,
1

r

∂ψ

∂n
= Φ on Γ,

ψ = ψm on Γ,
ψ = 0 on Σp.

− Ω is the domain limited by the boundary Γ,
− Φ is the magnetic field and ψm is the measured poloidal flux on Γ.

In this formulation the domain Ω is unknown since the free plasma boundary Σp

is unknown. This problem is ill posed in the sense of Hadamard.
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The Tokamak problem

Formulation of the problem: In order to determine the unknown plasma
boundary Σp location we use the Kohn-Vogelius formulation. For any plasma
domain Ωp, we define two forward problems: the first one is associated to the
magnetic field Φ (Newmann datum):

(PN)


LψN = 0 in Ω\Ωp

1

r

∂ψN

∂n
= Φ on Γ

ψN = 0 on Σp.

the second one is associated to the measured poloidal flux ψm(Dirichlet datum)

(PD)

 LψD = 0 in Ω\Ωp

ψD = ψm on Γ
ψD = 0 on Σp.

The identification process is based on the minimization of the following energy
function

K(Ω\Ωp) =

∫
Ω\Ωp

1

r
|∇ψD −∇ψN |2 dx.
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Topological Sensitivity analysis for the Grad-Shafranov equation

The topological sensitivity analysis for the Kohn-Vogelius function:
the Kohn-Vogelius function K is defined by

K(Ω \ ωε) =

∫
Ω\ωε

1

r
|∇ψε

N −∇ψε
D |

2 dx ,

with ψε
N and ψε

D are the solutions to the Neumann and Dirichlet perturbed
problems

(Pε
N)


Lψε

N = 0 in Ω\ωε
1

r
∇ψε

Nn = Φ on Γ

ψε
N = 0 on ∂ωε,

(Pε
D)

 Lψε
D = 0 in Ω\ωε

ψε
D = ψm on Γ
ψε
D = 0 on ∂ωε.

Theorem: The function K admits the following asymptotic expansion

K(Ω \ ωε) = K(Ω) +
−2π

log(ε)

1

x0

[∣∣ψ0
N(X0)

∣∣2 − ∣∣ψ0
D(X0)

∣∣2]+ o(
−1

log(ε)
). (4)

M. Hassine (UR ACEDP - FSM, Monastir) Workshop on PDE’s - Modelling & Theory May 9-10, Monastir 2018 80 / 83



Plasma boundary reconstruction

One-shot algorithm:

Compute the topological sensitivity δj(x , y), (x , y) ∈ Ω,

determine the plasma location by Ωp = {(x , y) ∈ Ω; δj(x , y) ≤ (1− ρ) gmin}
where gmin = min

(x,y)∈Ω
δj(x , y) and ρ ∈]0, 1[ is a heuristically determined small

parameter.

Plasma is likely to be located at zone where the topological gradient δj is
negative.

Figure: Isovalues of δj (left) and the obtained (red zone) plasma domain.
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Conclusion and Prospects

Conclusion:

The theory results are valid for large class of cost functions
The mathematical analysis is general and can be adapted for ohter
PDEs.
The numerical algorithm is fast: only one iteration.
The numerical computations are done on a fixed grid.
Various applications: optimization of injectors location, geometric
control of fluid flow, optimal shape design of tubes in a cavity and
detection of small flaws locations in moulded objects

Prospects:

Topological sensitivity analysis for coupled problems.
Convergence results for the numerical algorithms.
Optimization of the step length for the iterative process.
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Thank you for your attention
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