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Modeling faults and Slow Slip Events

strike slip pure thrust slip

or anything in between

we model Slow Slip Events (SSEs) using half space linear
elasticity

displacement fields are discontinuous across active parts of
faults

Inverse problem: find the fault geometry, and the slip field on
the fault (slip = discontinuity of displacements) from
measurements of surface displacements
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PDE model and integral formulation

Ω = half space x3 < 0 minus a fault Γ, The displacement field u
satisfies the forward fault problem

µ∆u + (λ + µ)∇divu = 0, in Ω linear elasticity PDE

Te3(u) = 0, on x3 = 0 no force applied

Tn(u) continuous across Γ continuity of forces

[u] = g across Γ given slip on Γ

([ ] denotes jumps)

u decays at infinity u has finite energy

we assume g ⋅ n = 0 no opening or cross penetration

integral formulation thanks to the adequate Green’s tensor H

u = ∫ΓHg
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Inverse problem

Given surface field u(x1, x2,0), find the fault Γ and g, the slip
on Γ.

but mathematically is that at all possible ???
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Mathematical study: forward problem

Theorem (D.V. et al. Inv. Prob. 2017)

The forward fault problem (that is, the PDE ) is uniquely solvable (in some

adequate functional space V).
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The functional space V
a Hardy type result (D.V. et al. Inv. Prob. 2017)

Theorem

Let Γ be a Lipschitz open surface which is strictly included in R3−. Let V
be the space of vector fields u defined in R3− ∖ Γ such that ∇u and

u

(1 + ∣x∣2)
1
2

are in L2(R3− ∖ Γ). Then the following four norms are

equivalent on V.

∥u∥1 = (∫
R3−∖Γ

∣∇u∣2)
1
2 + (∫

R3−∖Γ

∣u∣2

1 + ∣x∣2
)

1
2 , ∥u∥2 = (∫

R3−∖Γ
∣∇u∣2)

1
2

∥u∥3 = (∫
R3−∖Γ

∣ε(u)∣2)
1
2 , ∥u∥4 = B(u,u)1/2

where

B(u,v) = ∫
R3−∖Γ

λ tr(∇u)tr(∇v) + 2µ tr(ε(u)ε(v))
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Our uniqueness result for the inverse problem

Theorem (D.V. et al. Inv. Prob. 2017)

If u1 and u2 solve the forward problem and are equal on a disk on
the top surface {x3 = 0} then they correspond to the same fault
and slip field.

this result was proved for planar faults or faults included in
two rectangles - more complicated geometries are possible

for related results see, Friedman Vogelius 1989 (2D
conductivity in bounded domain), Beretta et al. 2008 (2D
elasticity in bounded domain)

our problem: 3D, unbounded, and boundary conditions are
given on the fault. ”passive” inverse problem
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Penalized deterministic reconstruction

Assume the fault is planar and parametrize it:

Let R be a closed rectangle in the plane x3 = 0.
Let B be a set of m = (a,b,d) such that the parallelogram

Γm = {(x1, x2, ax1 + bx2 + d) ∶ (x1, x2) ∈ R}

is included in the half-space x3 < 0
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Define a regularized error functional

Let V be an open bounded set of {x3 = 0}. Define the slip to
surface displacements operator

Am ∶ H1
0(R)→ L2

(V )

g → ∫
R
H(x, y1, y2,m)g(y1, y2)σdy1dy2 for x ∈ V

for a fixed measurement ũ in L2(V ) and a positive constant
C , define the regularized error functional

Fm,C(g) = ∥C
−1/2

(Amg − ũ)∥2
L2(V ) + C∥g∥2

H1
0 (R)

C is a uniformly positive definite matrix later interpreted as a
covariance term
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Convergence theorem

let

f (m,C) = inf
g∈H1

0 (R)
Fm,C(g)

this inf is achieved at some hm,C

the following theorem (J. C. Sandiumenge, D. V. 2017) claims
that as C tends to 0, then the minimum of f converges to the
solution of the inverse problem

recall that B is the set of admissible geometry parameters m
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Theorem

- Assume that ũ = Am̃h̃ for some m̃ in B and some h̃ in H1
0(R) is

the solution to the fault inverse problem.
- Let Cn be a sequence of positive numbers converging to zero.
- Let mn, hmn,Cn be such that:
f (mn,Cn) = minm∈B f (m,Cn), f (mn,Cn) = Fmn,Cn(hmn,Cn).

Then mn converges to m̃, hmn,Cn converges to h̃ in H1
0(R), and

Amnhmn,Cn converges to ũ in L2(V ).
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Convergence rate

Proposition

The following convergence rates estimates hold

∥Amnhmn,Cn − ũ∥ ≤ C
1
2
n ∥h̃∥

∥hmn,Cn − h̃∥ ≤
√

2∥v∥∥h̃∥(C
1
4
n + C(L,R)

1
2 ∣mn − m̃)∣

1
2 )

where we have assumed that h̃ is in the image of A∗m̃ with h̃ = A∗m̃v.

work in progress: once we establish stability results for the
fault inverse problems we will be able to estimate the
convergence rate of the geometry parameter ∣mn − m̃∣ in terms
of Cn
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Discrete error functional

Given measurements ũ at the points Pj define the functional
in V

F disc
m,C(g) =

N

∑
j=1

C ′
(j ,N)∣C

− 1
2 (Amg − ũ)(Pj)∣

2
+ C ∫

R
∣∇g∣2,

the terms C ′(j ,N) are from a quadrature rule, while C is a
covariance matrix and C > 0 is a constant

to be minimized over Fp, where Fp is an increasing sequence
of finite-dimensional subspaces of H1

0(R) such that ⋃∞p=1Fp is
dense.
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Theorem: the solution to the discrete inverse problem
converges to the true solution

Theorem (J. C. Sandiumenge, D. V. 2018)

Assume that ũ was produced by the slip h̃ for the geometry m̃. Set
Let m in B be such that

min
g∈Fp

F disc
m,C(g) = min

m∈B
min
h∈Fp

F disc
m,C(h)

Then m tends to m̃ as C → 0, N →∞, p →∞ provided
N > cst(1/C)β, where β is the order of the quadrature on V .

Proof is involved since problem is non-linear in m

this result shows that, in theory, finding deterministic solution
m is possible

but we would like to give a quantitative answer to the
question: ”if m′ is close to m, how likely is m′ to be a
solution”?
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Assume that ũ was produced by the slip h̃ for the geometry m̃. Set
Let m in B be such that

min
g∈Fp

F disc
m,C(g) = min

m∈B
min
h∈Fp

F disc
m,C(h)

Then m tends to m̃ as C → 0, N →∞, p →∞ provided
N > cst(1/C)β, where β is the order of the quadrature on V .

Proof is involved since problem is non-linear in m

this result shows that, in theory, finding deterministic solution
m is possible

but we would like to give a quantitative answer to the
question: ”if m′ is close to m, how likely is m′ to be a
solution”?

14 / 27



Theorem: the solution to the discrete inverse problem
converges to the true solution

Theorem (J. C. Sandiumenge, D. V. 2018)
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Stochastic modeling

Recorded surface displacements appear as
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goal: account for uncertainties in data
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Stochastic approach

model:

(ũ(P1), ..., ũ(PN)) = (Amg(P1), ...,Amg(PN)) + E

where m, g, are random variable, E is Gaussian noise with
density

ρnoise(v1, ...,vN)∝ exp(−
1

2

N

∑
j=1

C ′
(j ,N)∣C

− 1
2 vj ∣

2
)

Priors: we assume that g and m are independent with priors
ρprior(m)∝ 1B(m), ρFp(g)∝ exp(−1

2C ∫R ∣∇g∣2)
Baye’s formula:

ρ(m,g∣ũmeas)∝ ρ(ũmeas ∣m,g)ρFp(g)ρprior(m)

to simplify notations Introducing the 3N by 3N diagonal
matrix D such that

C
− 1

2 (C ′
(1,N)

1
2u(P1), ...,C

′
(N,N)

1
2u(PN)) = D(u(P1), ...,u(PN))
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probability density of m knowing ũmeas

integrate ρ(m,g∣ũmeas) in g: this can be done exactly to find

ρ(m∣ũmeas)∝ exp(−
1

2
F disc
m,C(hdiscm,C))

ρprior(m)
√

det((2π)−1(A′mD
2Am + CIq))

where F disc
m,C is the same functional as earlier in this talk and

hdiscm,C is the point in Fp where it achieves its minimum

(loosely speaking) we proved that this posterior probability
density must peak near m̃ (for small C , large N, small
covariance )
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integrate ρ(m,g∣ũmeas) in g: this can be done exactly to find
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Implementation and computation size

the discrete equivalent of minimizing F disc
m,C is to minimize

∥D(Ag − u)∥2
+ C(∥Dg∥2

+ ∥Eg∥2
)

- over g in Rq

- D and E are in Rq×q and discretize the derivatives in y1 and
y2 (and are adjusted to be invertible)
- A is in R3N×q and depends on m
- D is in R3N×3N and is diagional

challenge: due to the grid for m in B ⊂ R3 and iterations for
finding C , this minimization problem had to be solved about
106 times
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Find a way to choose the same C for all m

let g achieve the minimum of
∥D(Ag − u)∥2 + C(∥Dg∥2 + ∥Eg∥2):
and Dv be the orthogonal projection of Du on the range of
DA

∥D(Ag − u)∥ is continuous in C with range
(∥D(u − v)∥, ∥Du∥)

let Err be a number in (0, ∥Du3N∥).Define

C(i) = sup{C > 0 ∶ ∥D(Ag − u)∥ ≤ Err},

(or zero if that set is empty) where mi , i ∈ I is the grid of
points m
”the most regular solution for a given error”

compute C = max
i∈I

C(i)
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Ideas underlying Parallel Algorithm implementation

run calculations of C(i), i ∈ I in parallel to save time

note that some terms are independent of i and can be
pre-computed

the matrix A depends on mi , but we know that it is
rectangular, has low rank, and a small number of rows

in this problem A is a full matrix which is very expensive to
compute due to the complexity of the Green’s function H
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Parallel Algorithm

Algorithm for computing C(i), i ∈ I
Compute and save (D ′D + E ′E)−1

For each i ∈ I
Compute A
Compute the SVD of DA
if ∥D(u − v)∥ < Err

use a non-linear iterative solver to find C(i)
% at each iteration use Woodbury’s formula for
% computing (A′D2A + C(D ′D + E ′E))−1A′D2u

else
C(i) = 0

end
end
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Algorithm for computing the probability density ρ(m∣u)
Let M2 = D ′D + E ′E . The probability density of ρ(m∣u) is given by

I exp(−
1

2
∥D(Ag − u)∥

2
−

1

2
C(∥Dg∥

2
+ ∥Eg∥

2
))

ρprior (m)
√

det((2π)−1(A′D2A + CM2))
, (1)

Algorithm for computing ρ(mi ∣u)/I,
Compute and save M−1 and (D ′D + E ′E)−1

For each i ∈ I
Compute A
Compute the SVD of DA
Use the SV of DAM−1 to compute det((2π)−1(A′D2A +CIq))
Solve A′D2Ag +C(D ′D + E ′E)g = A′D2u
Evaluate ρ(mi ∣u)/I by using formula (1)

end

After applying the algorithm, there only remains to compute the
normalizing constant I
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Application to a Slow Slip Event in Guerrero Mexico

the points Pj appear as GPS station on this map

practice runs on simulated data using these Pjs
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Results: computed marginal probability densities
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Geometry parameters a and b (m = (a,b,d), d shown on next slide)
for the interface between plates in the Guerrero subduction zone.
Shown: computed marginal distributions for the geometry parameters a, b. The blue star curve corresponds

to the assumption that σhor = .5, σver = 1.5, the red circle curve corresponds to the assumption that

σhor = 1, σver = 3, and the orange cross curve corresponds to the assumption that σhor = 2, σver = 6.

best solution must be somewhere between blue and red (σhor , σver
can only be estimated)

Note that the probability densities for a,b,d CANNOT be
computed separately since a, b, and d are not independent
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for d

d
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marginal distribution of d

Our results are consistent with other studies where geometries were
found thanks to gravimetry or seismicity techniques (strike
direction very close - location of active part also very close - more
spread in dip angle )
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Slip statistics for the average geometry profile
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Computed average slip (left) and standard deviation (right)
for the Guerrero 2007 SSE. Note the change of scale for the
color bars between the two figures.

Classic (easier!) linear inverse problem, once we fix maximum
likelihood geometry
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Conclusion and future work

we have shown that faults and slip fields can be reconstructed from
surface displacements recorded during SSE

New model: piecewise linear geometries and C > 0 now a random
variable. Challenge: trapezoidal rule for computing marginals
becomes intractable - use Monte Carlo or Metropolis Hastings
type techniques

Using stability results for the continuous problems derive
convergence estimates of the recovered geometry as C → 0 in the
continuous and the discrete case

New application in geophysics: SSE in the Cascadia region of
Western North America: better imaging of related subduction zone.
estimates of strain fields (size of computation and covariance of
measurements will be different)
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