A non-linear stochastic inverse problem for faults in geophysics

Darko Volkov

Worcester Polytechnic Institute

May 7, 2018

AGU meeting 2017

<u>contributors</u>: I. R. Ionescu (Institut Galilée, Université Paris 13), M. Campillo, C. Voisin (Institut des Sciences de la Terre, Grenoble), J. C. Sandiumenge (Technical University of Catalonia) <u>support</u>: Simons foundation collaboration grant

strike slip

pure thrust slip

or anything in between

strike slip

pure thrust slip

or anything in between

• we model Slow Slip Events (SSEs) using half space linear elasticity

strike slip

pure thrust slip

or anything in between

- we model Slow Slip Events (SSEs) using half space linear elasticity
- displacement fields are discontinuous across active parts of faults

strike slip

pure thrust slip

or anything in between

- we model Slow Slip Events (SSEs) using half space linear elasticity
- displacement fields are discontinuous across active parts of faults
- Inverse problem: find the fault geometry, and the slip field on the fault (slip = discontinuity of displacements) from measurements of surface displacements

PDE model and integral formulation

 Ω = half space $x_3 < 0$ minus a fault Γ , The displacement field **u** satisfies the forward fault problem

$$\begin{split} \mu \Delta \mathbf{u} + (\lambda + \mu) \nabla \operatorname{div} \mathbf{u} = 0, & \text{in } \Omega & \text{linear elasticity PDE} \\ T_{\mathbf{e}_3}(\mathbf{u}) = 0, & \text{on } x_3 = 0 & \text{no force applied} \\ T_{\mathbf{n}}(\mathbf{u}) & \text{continuous across } \Gamma & \text{continuity of forces} \\ & [\mathbf{u}] = \mathbf{g} & \text{across } \Gamma & \text{given slip on } \Gamma \\ & ([] \text{ denotes jumps}) & \\ \mathbf{u} \text{ decays at infinity} & \mathbf{u} \text{ has finite energy} \\ \end{split}$$
we assume $\mathbf{g} \cdot \mathbf{n} = 0$ no opening or cross penetration

PDE model and integral formulation

 Ω = half space $x_3 < 0$ minus a fault Γ , The displacement field **u** satisfies the forward fault problem

$$\begin{split} \mu \Delta \mathbf{u} + (\lambda + \mu) \nabla \operatorname{div} \mathbf{u} = 0, & \text{in } \Omega & \text{linear elasticity PDE} \\ T_{\mathbf{e}_3}(\mathbf{u}) = 0, & \text{on } x_3 = 0 & \text{no force applied} \\ T_{\mathbf{n}}(\mathbf{u}) & \text{continuous across } \Gamma & \text{continuity of forces} \\ & [\mathbf{u}] = \mathbf{g} & \text{across } \Gamma & \text{given slip on } \Gamma \\ & ([] \text{ denotes jumps}) & \\ \mathbf{u} \text{ decays at infinity} & \mathbf{u} \text{ has finite energy} \end{split}$$

we assume $\mathbf{g} \cdot \mathbf{n} = 0$ no opening or cross penetration integral formulation thanks to the adequate Green's tensor \mathcal{H}

$$\mathbf{u} = \int_{\Gamma} \mathcal{H} \mathbf{g}$$

・ロト ・日 ・ モ ・ ・ モ ・ ・ 日 ・ うくの

 Given surface field u(x₁, x₂, 0), find the fault Γ and g, the slip on Γ.

- Given surface field u(x₁, x₂, 0), find the fault Γ and g, the slip on Γ.
- but mathematically is that at all possible ???

The forward fault problem (that is, the PDE) is uniquely solvable (in some adequate functional space v).

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

The functional space \mathcal{V}

a Hardy type result (D.V. et al. Inv. Prob. 2017)

Theorem

Let Γ be a Lipschitz open surface which is strictly included in \mathbb{R}^{3-} . Let \mathcal{V} be the space of vector fields \mathbf{u} defined in $\mathbb{R}^{3-} \setminus \overline{\Gamma}$ such that $\nabla \mathbf{u}$ and $\frac{\mathbf{u}}{(1+|\mathbf{x}|^2)^{\frac{1}{2}}}$ are in $L^2(\mathbb{R}^{3-} \setminus \overline{\Gamma})$. Then the following four norms are equivalent on \mathcal{V} .

$$\|\mathbf{u}\|_{1} = \left(\int_{\mathbb{R}^{3-}\sqrt{\Gamma}} |\nabla \mathbf{u}|^{2}\right)^{\frac{1}{2}} + \left(\int_{\mathbb{R}^{3-}\sqrt{\Gamma}} \frac{|\mathbf{u}|^{2}}{1+|\mathbf{x}|^{2}}\right)^{\frac{1}{2}}, \|\mathbf{u}\|_{2} = \left(\int_{\mathbb{R}^{3-}\sqrt{\Gamma}} |\nabla \mathbf{u}|^{2}\right)^{\frac{1}{2}} \\ \|\mathbf{u}\|_{3} = \left(\int_{\mathbb{R}^{3-}\sqrt{\Gamma}} |\epsilon(\mathbf{u})|^{2}\right)^{\frac{1}{2}}, \|\mathbf{u}\|_{4} = B(\mathbf{u}, \mathbf{u})^{1/2}$$

where

$$B(\mathbf{u},\mathbf{v}) = \int_{\mathbb{R}^{3-\sqrt{\Gamma}}} \lambda \operatorname{tr}(\nabla \mathbf{u}) \operatorname{tr}(\nabla \mathbf{v}) + 2\mu \operatorname{tr}(\epsilon(\mathbf{u})\epsilon(\mathbf{v}))$$

6 / 27

イロン 不同 とくほう イロン

If \mathbf{u}^1 and \mathbf{u}^2 solve the forward problem and are equal on a disk on the top surface $\{x_3 = 0\}$ then they correspond to the same fault and slip field.

If \mathbf{u}^1 and \mathbf{u}^2 solve the forward problem and are equal on a disk on the top surface $\{x_3 = 0\}$ then they correspond to the same fault and slip field.

 this result was proved for planar faults or faults included in two rectangles - more complicated geometries are possible

If \mathbf{u}^1 and \mathbf{u}^2 solve the forward problem and are equal on a disk on the top surface $\{x_3 = 0\}$ then they correspond to the same fault and slip field.

- this result was proved for planar faults or faults included in two rectangles - more complicated geometries are possible
- for related results see, Friedman Vogelius 1989 (2D conductivity in bounded domain), Beretta et al. 2008 (2D elasticity in bounded domain)

If \mathbf{u}^1 and \mathbf{u}^2 solve the forward problem and are equal on a disk on the top surface $\{x_3 = 0\}$ then they correspond to the same fault and slip field.

- this result was proved for planar faults or faults included in two rectangles - more complicated geometries are possible
- for related results see, Friedman Vogelius 1989 (2D conductivity in bounded domain), Beretta et al. 2008 (2D elasticity in bounded domain)
- our problem: 3D, unbounded, and boundary conditions are given on the fault. "passive" inverse problem

Penalized deterministic reconstruction

Assume the fault is planar and parametrize it:

Penalized deterministic reconstruction

Assume the fault is planar and parametrize it:

• Let R be a closed rectangle in the plane $x_3 = 0$.

Penalized deterministic reconstruction

Assume the fault is planar and parametrize it:

- Let R be a closed rectangle in the plane $x_3 = 0$.
- Let B be a set of m = (a, b, d) such that the parallelogram

$$\Gamma_m = \{ (x_1, x_2, ax_1 + bx_2 + d) : (x_1, x_2) \in R \}$$

is included in the half-space $x_3 < 0$

Define a regularized error functional

Define a regularized error functional

• Let *V* be an open bounded set of {*x*₃ = 0}. Define the slip to surface displacements operator

$$\begin{aligned} A_m &: \quad H_0^1(R) \to L^2(V) \\ & \mathbf{g} \to \int_R \mathcal{H}(\mathbf{x}, y_1, y_2, m) \mathbf{g}(y_1, y_2) \sigma dy_1 dy_2 \quad \text{ for } \mathbf{x} \in V \end{aligned}$$

Define a regularized error functional

• Let V be an open bounded set of {x₃ = 0}. Define the slip to surface displacements operator

$$\begin{aligned} A_m &: \quad H_0^1(R) \to L^2(V) \\ & \mathbf{g} \to \int_R \mathcal{H}(\mathbf{x}, y_1, y_2, m) \mathbf{g}(y_1, y_2) \sigma dy_1 dy_2 \quad \text{ for } \mathbf{x} \in V \end{aligned}$$

 for a fixed measurement ũ in L²(V) and a positive constant C, define the regularized error functional

$$F_{m,C}(\mathbf{g}) = \|\mathcal{C}^{-1/2}(A_m \mathbf{g} - \tilde{\mathbf{u}})\|_{L^2(V)}^2 + C\|\mathbf{g}\|_{H_0^1(R)}^2$$

 $\ensuremath{\mathcal{C}}$ is a uniformly positive definite matrix later interpreted as a covariance term

Convergence theorem

Convergence theorem

Iet

$$f(m,C) = \inf_{\mathbf{g}\in H_0^1(R)} F_{m,C}(\mathbf{g})$$

・ロト・西ト・モン・モー もくの

Iet

$$f(m,C) = \inf_{\mathbf{g}\in H^1_0(R)} F_{m,C}(\mathbf{g})$$

• this inf is achieved at some $\mathbf{h}_{m,C}$

Iet

$$f(m,C) = \inf_{\mathbf{g}\in H_0^1(R)} F_{m,C}(\mathbf{g})$$

- this inf is achieved at some **h**_{m,C}
- the following theorem (J. C. Sandiumenge, D. V. 2017) claims that as C tends to 0, then the minimum of f converges to the solution of the inverse problem

Iet

$$f(m,C) = \inf_{\mathbf{g}\in H_0^1(R)} F_{m,C}(\mathbf{g})$$

- this inf is achieved at some **h**_{m,C}
- the following theorem (J. C. Sandiumenge, D. V. 2017) claims that as C tends to 0, then the minimum of f converges to the solution of the inverse problem
- recall that B is the set of admissible geometry parameters m

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

- Assume that $\tilde{\mathbf{u}} = A_{\tilde{m}}\tilde{\mathbf{h}}$ for some \tilde{m} in B and some $\tilde{\mathbf{h}}$ in $H_0^1(R)$ is the solution to the fault inverse problem.

- Let C_n be a sequence of positive numbers converging to zero.
- Let m_n , \mathbf{h}_{m_n,C_n} be such that:

 $f(m_n, C_n) = \min_{m \in B} f(m, C_n), f(m_n, C_n) = F_{m_n, C_n}(\mathbf{h}_{m_n, C_n}).$

Theorem

- Assume that $\tilde{\mathbf{u}} = A_{\tilde{m}}\tilde{\mathbf{h}}$ for some \tilde{m} in B and some $\tilde{\mathbf{h}}$ in $H_0^1(R)$ is the solution to the fault inverse problem.

- Let C_n be a sequence of positive numbers converging to zero. - Let m_n , \mathbf{h}_{m_n,C_n} be such that: $f(m_n, C_n) = \min_{m \in B} f(m, C_n)$, $f(m_n, C_n) = F_{m_n,C_n}(\mathbf{h}_{m_n,C_n})$.

Then m_n converges to \tilde{m} , \mathbf{h}_{m_n,C_n} converges to $\tilde{\mathbf{h}}$ in $H_0^1(R)$, and $A_{m_n}\mathbf{h}_{m_n,C_n}$ converges to $\tilde{\mathbf{u}}$ in $L^2(V)$.

Proposition

The following convergence rates estimates hold

$$\|A_{m_n}\mathbf{h}_{m_n,C_n} - \tilde{\mathbf{u}}\| \le C_n^{\frac{1}{2}} \|\tilde{\mathbf{h}}\| \\ \|\mathbf{h}_{m_n,C_n} - \tilde{\mathbf{h}}\| \le \sqrt{2\|\mathbf{v}\| \|\tilde{\mathbf{h}}\|} (C_n^{\frac{1}{4}} + C(L,R)^{\frac{1}{2}} |m_n - \tilde{m})|^{\frac{1}{2}})$$

where we have assumed that $\tilde{\mathbf{h}}$ is in the image of $A_{\tilde{m}}^*$ with $\tilde{\mathbf{h}} = A_{\tilde{m}}^* \mathbf{v}$.

Proposition

The following convergence rates estimates hold

$$\|A_{m_n}\mathbf{h}_{m_n,C_n} - \tilde{\mathbf{u}}\| \le C_n^{\frac{1}{2}} \|\tilde{\mathbf{h}}\| \\ \|\mathbf{h}_{m_n,C_n} - \tilde{\mathbf{h}}\| \le \sqrt{2\|\mathbf{v}\| \|\tilde{\mathbf{h}}\|} (C_n^{\frac{1}{4}} + C(L,R)^{\frac{1}{2}} |m_n - \tilde{m})|^{\frac{1}{2}})$$

where we have assumed that $\tilde{\mathbf{h}}$ is in the image of $A_{\tilde{m}}^*$ with $\tilde{\mathbf{h}} = A_{\tilde{m}}^* \mathbf{v}$.

• work in progress: once we establish stability results for the fault inverse problems we will be able to estimate the convergence rate of the geometry parameter $|m_n - \tilde{m}|$ in terms of C_n

▲ロト ▲圖 ト ▲ 画 ト ▲ 画 → のへの

 Given measurements ũ at the points P_j define the functional in V

$$F_{m,C}^{disc}(\mathbf{g}) = \sum_{j=1}^{N} C'(j,N) |\mathcal{C}^{-\frac{1}{2}}(A_m \mathbf{g} - \tilde{\mathbf{u}})(P_j)|^2 + C \int_{R} |\nabla \mathbf{g}|^2,$$

 Given measurements ũ at the points P_j define the functional in V

$$F_{m,C}^{disc}(\mathbf{g}) = \sum_{j=1}^{N} C'(j,N) |\mathcal{C}^{-\frac{1}{2}}(A_m \mathbf{g} - \tilde{\mathbf{u}})(P_j)|^2 + C \int_{R} |\nabla \mathbf{g}|^2,$$

• the terms C'(j, N) are from a quadrature rule, while C is a covariance matrix and C > 0 is a constant

 Given measurements ũ at the points P_j define the functional in V

$$F_{m,C}^{disc}(\mathbf{g}) = \sum_{j=1}^{N} C'(j,N) |\mathcal{C}^{-\frac{1}{2}}(A_m \mathbf{g} - \tilde{\mathbf{u}})(P_j)|^2 + C \int_{R} |\nabla \mathbf{g}|^2,$$

- the terms C'(j, N) are from a quadrature rule, while C is a covariance matrix and C > 0 is a constant
- to be minimized over *F_p*, where *F_p* is an increasing sequence of finite-dimensional subspaces of *H*¹₀(*R*) such that ∪[∞]_{p=1} *F_p* is dense.

Theorem: the solution to the discrete inverse problem converges to the true solution

Theorem (J. C. Sandiumenge, D. V. 2018)

Assume that \tilde{u} was produced by the slip \tilde{h} for the geometry \tilde{m} . Set Let \overline{m} in B be such that

$$\min_{\mathbf{g}\in\mathcal{F}_p} F_{\overline{m},C}^{disc}(\mathbf{g}) = \min_{m\in B} \min_{\mathbf{h}\in\mathcal{F}_p} F_{m,C}^{disc}(\mathbf{h})$$

Then \overline{m} tends to \widetilde{m} as $C \to 0$, $N \to \infty$, $p \to \infty$ provided $N > cst(1/C)^{\beta}$, where β is the order of the quadrature on V.

14 / 27
Theorem: the solution to the discrete inverse problem converges to the true solution

Theorem (J. C. Sandiumenge, D. V. 2018)

Assume that \tilde{u} was produced by the slip \tilde{h} for the geometry \tilde{m} . Set Let \overline{m} in B be such that

$$\min_{\mathbf{g}\in\mathcal{F}_p} F_{\overline{m},C}^{disc}(\mathbf{g}) = \min_{m\in B} \min_{\mathbf{h}\in\mathcal{F}_p} F_{m,C}^{disc}(\mathbf{h})$$

Then \overline{m} tends to \widetilde{m} as $C \to 0$, $N \to \infty$, $p \to \infty$ provided $N > cst(1/C)^{\beta}$, where β is the order of the quadrature on V.

• Proof is involved since problem is non-linear in m

Theorem: the solution to the discrete inverse problem converges to the true solution

Theorem (J. C. Sandiumenge, D. V. 2018)

Assume that \tilde{u} was produced by the slip \tilde{h} for the geometry \tilde{m} . Set Let \overline{m} in B be such that

$$\min_{\mathbf{g}\in\mathcal{F}_p} F_{\overline{m},C}^{disc}(\mathbf{g}) = \min_{m\in B} \min_{\mathbf{h}\in\mathcal{F}_p} F_{m,C}^{disc}(\mathbf{h})$$

Then \overline{m} tends to \widetilde{m} as $C \to 0$, $N \to \infty$, $p \to \infty$ provided $N > cst(1/C)^{\beta}$, where β is the order of the quadrature on V.

- Proof is involved since problem is non-linear in m
- this result shows that, in theory, finding deterministic solution \overline{m} is possible

Theorem: the solution to the discrete inverse problem converges to the true solution

Theorem (J. C. Sandiumenge, D. V. 2018)

Assume that \tilde{u} was produced by the slip \tilde{h} for the geometry $\tilde{m}.$ Set Let \overline{m} in B be such that

$$\min_{\mathbf{g}\in\mathcal{F}_p} F_{\overline{m},C}^{disc}(\mathbf{g}) = \min_{m\in B} \min_{\mathbf{h}\in\mathcal{F}_p} F_{m,C}^{disc}(\mathbf{h})$$

Then \overline{m} tends to \widetilde{m} as $C \to 0$, $N \to \infty$, $p \to \infty$ provided $N > cst(1/C)^{\beta}$, where β is the order of the quadrature on V.

- Proof is involved since problem is non-linear in m
- this result shows that, in theory, finding deterministic solution \overline{m} is possible
- but we would like to give a quantitative answer to the question: "if m' is close to m, how likely is m' to be a solution"?

Recorded surface displacements appear as

goal: account for uncertainties in data

▲ロト ▲聞 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 □ ∽ � � ♡ � ♡

• model:

 $(\tilde{\mathbf{u}}(P_1), ..., \tilde{\mathbf{u}}(P_N)) = (A_m \mathbf{g}(P_1), ..., A_m \mathbf{g}(P_N)) + \mathcal{E}$ where m, \mathbf{g} , are random variable, \mathcal{E} is Gaussian noise with density

$$\rho_{noise}(\mathbf{v}_1, ..., \mathbf{v}_N) \propto \exp(-\frac{1}{2}\sum_{j=1}^N C'(j, N) |\mathcal{C}^{-\frac{1}{2}} \mathbf{v}_j|^2)$$

• model:

 $(\tilde{\mathbf{u}}(P_1), ..., \tilde{\mathbf{u}}(P_N)) = (A_m \mathbf{g}(P_1), ..., A_m \mathbf{g}(P_N)) + \mathcal{E}$ where m, \mathbf{g} , are random variable, \mathcal{E} is Gaussian noise with density

$$\rho_{\text{noise}}(\mathbf{v}_1, ..., \mathbf{v}_N) \propto \exp(-\frac{1}{2}\sum_{j=1}^N C'(j, N) |\mathcal{C}^{-\frac{1}{2}} \mathbf{v}_j|^2)$$

• Priors: we assume that **g** and *m* are independent with priors $\rho_{prior}(m) \propto 1_B(m), \quad \rho_{\mathcal{F}_p}(\mathbf{g}) \propto \exp(-\frac{1}{2}C \int_R |\nabla \mathbf{g}|^2)$

• model:

 $(\tilde{\mathbf{u}}(P_1), ..., \tilde{\mathbf{u}}(P_N)) = (A_m \mathbf{g}(P_1), ..., A_m \mathbf{g}(P_N)) + \mathcal{E}$ where m, \mathbf{g} , are random variable, \mathcal{E} is Gaussian noise with density

$$\rho_{\textit{noise}}(\mathbf{v}_1, ..., \mathbf{v}_N) \propto \exp(-\frac{1}{2}\sum_{j=1}^N C'(j, N) |\mathcal{C}^{-\frac{1}{2}} \mathbf{v}_j|^2)$$

• Priors: we assume that **g** and *m* are independent with priors $\rho_{prior}(m) \propto 1_B(m), \quad \rho_{\mathcal{F}_p}(\mathbf{g}) \propto \exp(-\frac{1}{2}C \int_R |\nabla \mathbf{g}|^2)$ • Baye's formula:

$$\rho(\mathbf{m}, \mathbf{g} | \tilde{\mathbf{u}}_{meas}) \propto \rho(\tilde{\mathbf{u}}_{meas} | \mathbf{m}, \mathbf{g}) \rho_{\mathcal{F}_{p}}(\mathbf{g}) \rho_{prior}(\mathbf{m})$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

• model:

 $(\tilde{\mathbf{u}}(P_1), ..., \tilde{\mathbf{u}}(P_N)) = (A_m \mathbf{g}(P_1), ..., A_m \mathbf{g}(P_N)) + \mathcal{E}$ where m, \mathbf{g} , are random variable, \mathcal{E} is Gaussian noise with density

$$\rho_{\text{noise}}(\mathbf{v}_1, ..., \mathbf{v}_N) \propto \exp\left(-\frac{1}{2}\sum_{j=1}^N C'(j, N) |\mathcal{C}^{-\frac{1}{2}} \mathbf{v}_j|^2\right)$$

• Priors: we assume that **g** and *m* are independent with priors $\rho_{prior}(m) \propto 1_B(m), \quad \rho_{\mathcal{F}_p}(\mathbf{g}) \propto \exp(-\frac{1}{2}C \int_R |\nabla \mathbf{g}|^2)$ • Baye's formula:

$$\rho(\mathbf{m}, \mathbf{g} | \tilde{\mathbf{u}}_{meas}) \propto \rho(\tilde{\mathbf{u}}_{meas} | \mathbf{m}, \mathbf{g}) \rho_{\mathcal{F}_p}(\mathbf{g}) \rho_{prior}(\mathbf{m})$$

to simplify notations Introducing the 3N by 3N diagonal matrix D such that
 C^{-1/2}(C'(1,N)^{1/2}u(P₁),...,C'(N,N)^{1/2}u(P_N)) = D(u(P₁),...,u(P_N))

probability density of m knowing $\tilde{\mathbf{u}}_{meas}$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● のへの

probability density of m knowing $\tilde{\mathbf{u}}_{meas}$

• integrate $\rho(m, \mathbf{g} | \tilde{\mathbf{u}}_{meas})$ in \mathbf{g} : this can be done exactly to find

$$\rho(m|\tilde{\mathbf{u}}_{meas}) \propto \exp(-\frac{1}{2} F_{m,C}^{disc}(\mathbf{h}_{m,C}^{disc})) \frac{\rho_{prior}(m)}{\sqrt{\det((2\pi)^{-1}(A'_m \mathcal{D}^2 A_m + Cl_q))}}$$

where $F_{m,C}^{disc}$ is the same functional as earlier in this talk and $\mathbf{h}_{m,C}^{disc}$ is the point in \mathcal{F}_p where it achieves its minimum

probability density of m knowing $\tilde{\mathbf{u}}_{meas}$

• integrate $\rho(m, \mathbf{g} | \tilde{\mathbf{u}}_{meas})$ in \mathbf{g} : this can be done exactly to find

$$\rho(m|\tilde{\mathbf{u}}_{meas}) \propto \exp(-\frac{1}{2}F_{m,C}^{disc}(\mathbf{h}_{m,C}^{disc})) \frac{\rho_{prior}(m)}{\sqrt{\det((2\pi)^{-1}(A_m'\mathcal{D}^2A_m + CI_q))}}$$

where $F_{m,C}^{disc}$ is the same functional as earlier in this talk and $\mathbf{h}_{m,C}^{disc}$ is the point in \mathcal{F}_p where it achieves its minimum

 (loosely speaking) we proved that this posterior probability density must peak near m̃ (for small C, large N, small covariance)

Implementation and computation size

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ● 日 → のへの

Implementation and computation size

• the discrete equivalent of minimizing $F_{m,C}^{disc}$ is to minimize

$$\|\mathcal{D}(Ag - u)\|^2 + C(\|Dg\|^2 + \|Eg\|^2)$$

- over g in \mathbb{R}^q
- *D* and *E* are in $\mathbb{R}^{q \times q}$ and discretize the derivatives in y_1 and y_2 (and are adjusted to be invertible) - *A* is in $\mathbb{R}^{3N \times q}$ and depends on *m*
- $\mathcal D$ is in $\mathbb{R}^{3N\times 3N}$ and is diagional

Implementation and computation size

• the discrete equivalent of minimizing $F_{m,C}^{disc}$ is to minimize

$$\|\mathcal{D}(Ag - u)\|^2 + C(\|Dg\|^2 + \|Eg\|^2)$$

- over g in \mathbb{R}^q
- *D* and *E* are in $\mathbb{R}^{q \times q}$ and discretize the derivatives in y_1 and y_2 (and are adjusted to be invertible)
- A is in $\mathbb{R}^{3N \times q}$ and depends on m
- $\mathcal D$ is in $\mathbb{R}^{3N\times 3N}$ and is diagional
- challenge: due to the grid for m in B ⊂ ℝ³ and iterations for finding C, this minimization problem had to be solved about 10⁶ times

- $\|\mathcal{D}(A\overline{g} u)\|$ is continuous in *C* with range $(\|\mathcal{D}(u v)\|, \|\mathcal{D}u\|)$

- $\|\mathcal{D}(A\overline{g} u)\|$ is continuous in C with range $(\|\mathcal{D}(u v)\|, \|\mathcal{D}u\|)$
- let **Err** be a number in $(0, ||\mathcal{D}u^{3N}||)$.Define

$$C(i) = \sup\{C > 0 : \|\mathcal{D}(A\overline{g} - u)\| \le \mathbf{Err}\},\$$

(or zero if that set is empty) where m_i , $i \in I$ is the grid of points m

"the most regular solution for a given error"

- $\|\mathcal{D}(A\overline{g} u)\|$ is continuous in *C* with range $(\|\mathcal{D}(u v)\|, \|\mathcal{D}u\|)$
- let **Err** be a number in $(0, ||\mathcal{D}u^{3N}||)$.Define

$$C(i) = \sup\{C > 0 : \|\mathcal{D}(A\overline{g} - u)\| \le \mathbf{Err}\},\$$

(or zero if that set is empty) where m_i , $i \in I$ is the grid of points m

"the most regular solution for a given error"

• compute
$$\mathbf{C} = \max_{i \in I} C(i)$$

• run calculations of C(i), $i \in I$ in parallel to save time

- run calculations of C(i), $i \in I$ in parallel to save time
- note that some terms are independent of *i* and can be pre-computed

- run calculations of C(i), $i \in I$ in parallel to save time
- note that some terms are independent of *i* and can be pre-computed
- the matrix A depends on m_i , but we know that it is rectangular, has low rank, and a small number of rows

- run calculations of C(i), $i \in I$ in parallel to save time
- note that some terms are independent of *i* and can be pre-computed
- the matrix A depends on m_i , but we know that it is rectangular, has low rank, and a small number of rows
- in this problem A is a full matrix which is very expensive to compute due to the complexity of the Green's function \mathcal{H}

```
Algorithm for computing C(i), i \in I
Compute and save (D'D + E'E)^{-1}
For each i \in I
    Compute A
    Compute the SVD of \mathcal{D}A
    if \|\mathcal{D}(u-v)\| < \mathbf{Err}
         use a non-linear iterative solver to find C(i)
         % at each iteration use Woodbury's formula for
         % computing (A'\mathcal{D}^2A + C(D'D + E'E))^{-1}A'\mathcal{D}^2u
    else
         C(i) = 0
    end
end
```

< ロ > < 同 > < 回 > < 回 > < □ > <

Algorithm for computing the probability density $\rho(m|u)$

Let $M^2 = D'D + E'E$. The probability density of $\rho(m|u)$ is given by

$$\mathcal{I}\exp(-\frac{1}{2}\|\mathcal{D}(Ag-u)\|^{2} - \frac{1}{2}\mathbf{C}(\|Dg\|^{2} + \|Eg\|^{2}))\frac{\rho_{prior}(m)}{\sqrt{\det((2\pi)^{-1}(A'\mathcal{D}^{2}A + \mathbf{C}M^{2}))}},$$
(1)

Algorithm for computing $\rho(m_i|u)/\mathcal{I}$, Compute and save M^{-1} and $(D'D + E'E)^{-1}$ For each $i \in I$ Compute ACompute the SVD of $\mathcal{D}A$ Use the SV of $\mathcal{D}AM^{-1}$ to compute $\det((2\pi)^{-1}(A'\mathcal{D}^2A + \mathbb{C}I_q))$ Solve $A'\mathcal{D}^2Ag + \mathbb{C}(D'D + E'E)g = A'\mathcal{D}^2u$ Evaluate $\rho(m_i|u)/\mathcal{I}$ by using formula (1) end

After applying the algorithm, there only remains to compute the normalizing constant $\ensuremath{\mathcal{I}}$

Application to a Slow Slip Event in Guerrero Mexico

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 ○ のへで

23 / 27

Application to a Slow Slip Event in Guerrero Mexico

• the points P_j appear as GPS station on this map

Application to a Slow Slip Event in Guerrero Mexico

- the points P_j appear as GPS station on this map
- practice runs on simulated data using these P_is

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

24 / 27

• Geometry parameters a and b (m = (a, b, d), d shown on next slide) for the interface between plates in the Guerrero subduction zone.

Shown: computed marginal distributions for the geometry parameters a, b. The blue star curve corresponds to the assumption that $\sigma_{hor} = .5$, $\sigma_{ver} = 1.5$, the red circle curve corresponds to the assumption that $\sigma_{hor} = 1$, $\sigma_{ver} = 3$, and the orange cross curve corresponds to the assumption that $\sigma_{hor} = 2$, $\sigma_{ver} = 6$.

 Geometry parameters a and b (m = (a, b, d), d shown on next slide) for the interface between plates in the Guerrero subduction zone.

Shown: computed marginal distributions for the geometry parameters a, b. The blue star curve corresponds to the assumption that $\sigma_{hor} = .5$, $\sigma_{ver} = 1.5$, the red circle curve corresponds to the assumption that $\sigma_{hor} = 1$, $\sigma_{ver} = 3$, and the orange cross curve corresponds to the assumption that $\sigma_{hor} = 2$, $\sigma_{ver} = 6$.

best solution must be somewhere between blue and red (σ_{hor}, σ_{ver} can only be estimated)

 Geometry parameters a and b (m = (a, b, d), d shown on next slide) for the interface between plates in the Guerrero subduction zone.

Shown: computed marginal distributions for the geometry parameters a, b. The blue star curve corresponds to the assumption that $\sigma_{hor} = .5$, $\sigma_{ver} = 1.5$, the red circle curve corresponds to the assumption that

 σ_{hor} = 1, σ_{ver} = 3, and the orange cross curve corresponds to the assumption that σ_{hor} = 2, σ_{ver} = 6.

- best solution must be somewhere between blue and red (σ_{hor}, σ_{ver} can only be estimated)
- Note that the probability densities for *a*, *b*, *d* CANNOT be computed separately since *a*, *b*, and *d* are not independent

marginal distribution of d

Our results are consistent with other studies where geometries were found thanks to gravimetry or seismicity techniques (strike direction very close - location of active part also very close - more spread in dip angle)

Slip statistics for the average geometry profile

◆ロ → ◆昼 → ◆ 臣 → ◆ 臣 → ◇ Q () ◆
Slip statistics for the average geometry profile

• Computed average slip (left) and standard deviation (right) for the Guerrero 2007 SSE. Note the change of scale for the color bars between the two figures.

Slip statistics for the average geometry profile

- Computed average slip (left) and standard deviation (right) for the Guerrero 2007 SSE. Note the change of scale for the color bars between the two figures.
- Classic (easier!) linear inverse problem, once we fix maximum likelihood geometry

・ロト ・日 ・ モ ・ ・ モ ・ ・ 日 ・ うくの

27 / 27

• we have shown that faults and slip fields can be reconstructed from surface displacements recorded during SSE

- we have shown that faults and slip fields can be reconstructed from surface displacements recorded during SSE
- New model: piecewise linear geometries and C > 0 now a random variable. Challenge: trapezoidal rule for computing marginals becomes intractable use Monte Carlo or Metropolis Hastings type techniques

- we have shown that faults and slip fields can be reconstructed from surface displacements recorded during SSE
- New model: piecewise linear geometries and C > 0 now a random variable. Challenge: trapezoidal rule for computing marginals becomes intractable use Monte Carlo or Metropolis Hastings type techniques
- Using stability results for the continuous problems derive convergence estimates of the recovered geometry as $C \rightarrow 0$ in the continuous and the discrete case

- we have shown that faults and slip fields can be reconstructed from surface displacements recorded during SSE
- New model: piecewise linear geometries and C > 0 now a random variable. Challenge: trapezoidal rule for computing marginals becomes intractable use Monte Carlo or Metropolis Hastings type techniques
- Using stability results for the continuous problems derive convergence estimates of the recovered geometry as $C \rightarrow 0$ in the continuous and the discrete case
- New application in geophysics: SSE in the Cascadia region of Western North America: better imaging of related subduction zone. estimates of strain fields (size of computation and covariance of measurements will be different)