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Source scattering problems

Source scattering problems are concerned with the relationship between
radiating sources and wave fields.

Direct problem: To determine the wave field from the given source
and the differential equation governing the wave motion.
Inverse problem: To determine the radiating source which produces
the measured wave field.
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Applications

Non-destructive testing

Teleseismic estimation

Microseismic analysis

Biomedical imaging

4 / 28



Application in microseismic
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Elastic wave equations

Equation of motion

ρ
∂2ui
∂t2

=
d∑

j=1

∂σij
∂xj

+ F (x , t), i = 1, · · · , d .

Constitutive equation

σij = CijklSkl with Skl =
1

2

(
∂uk
∂xl

+
∂ul
∂xk

)
.

The symmetry of σij and Skl yields

Cijkl = Cklij = Cjikl = Cijlk .

In isotropic medium

Cijkl = λδijδkl + µ(δikδjl + δilδjk),

where λ and µ are Lamé parameters satisfying µ > 0 and dλ+ 2µ > 0.
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Elastic wave equations

In homogeneous isotropic medium

Time-dependent Navier equation

ρutt −∆∗u = F (x , t) in Rd × R+

Time-harmonic Navier equation

∆∗u + ρω2u = −F (x , ω) in Rd

Here, ∆∗ = µ∆ + (λ+ µ) grad div is the Lamé operator.
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Direct time-harmonic scattering problems

The Navier equation

∆∗u + ρω2u = f in Rd .

The Helmholtz decomposition

u = ∇φ+∇×ψ, ∇ ·ψ = 0 in R3 \ Ω̄,

where φ and ψ satisfy

∆φ+ k2pφ = 0, ∇× (∇×ψ)− k2sψ = 0 in R3 \ Ω̄.

Here

kp = ω

√
ρ

λ+ 2µ
, ks = ω

√
ρ

µ
.
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Radiation condition

The Helmholtz decomposition

u = up + us in R3 \ Ω̄,

where

up = − 1

k2p
∇∇ · u, us =

1

k2s
∇× (∇× u).

The Kupradze–Sommerfeld radiation condition:

lim
r→∞

r(∂rup − ikpup) = 0, lim
r→∞

r(∂rus − iksus) = 0, r = |x |.
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Time-dependent inverse source problems

Consider the time-dependent problem

ρUtt −∆∗U = f (x)g(t) in R3 × R+,

with the initial conditions

U|t=0 = Ut |t=0 = 0 in R3.

ISP. Let f ∈ L2(R3)3 be compactly supported in BR for some R > 0 and
g ∈ C(R) is supported in [0,T0]. The ISP is to

determine the spatial function f if g is known;

determine temporal functions g if f is known.
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Time-dependent inverse source problems

Vibration phenomena in seismology

Teleseismic earthquake estimation

f (x) = exp(−a|x − x0|2)

g(t) = [1− 2π2ω2
0(t − t0)2]exp(−π2ω2

0(t − t0)2)

Biomedical imaging

temporally localized:
dδ(t)

dt
f (x)
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Preliminaries

By Helmholtz decomposition, the function f ∈ (L2(R3))3 supported in BR0

admits a unique decomposition of the form

f (x) = ∇fp(x) +∇× fs(x), ∇ · fs ≡ 0,

where fp ∈ H1(BR0), fs ∈ Hcurl (BR0) also have compact support in BR0 .
Here,

Hcurl (BR0) := {u : u ∈ (L2(BR0))3, curl u ∈ (L2(BR0))3}.

Lemma

Suppose that S ∈ (L2(R3))3 has a compact support in BR for some
R > 0, then the Helmholtz decomposition of S is unique.
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Preliminaries

By the completeness theorem, there exist vector-valued functions Up(x , t)
and Us(x , t) such that U(x , t) can be expressed as

U = Up + Us , Up = ∇ up, Us = ∇× us , ∇ · us = 0.

Moreover, the scalar function up and the vector function us satisfy the
inhomogeneous wave equations

1

c2α
∂tt uα −∆uα =

1

γα
fα(x)g(t) in R3 × (0,+∞), α = p, s,

together with the initial conditions

uα|t=0 = ∂tuα|t=0 = 0 in R3.

Note that

cp :=
√

(λ+ 2µ)/ρ, cs :=
√
µ/ρ, γp := λ+ 2µ, γs := µ,

and that λ+ 2µ > 0 since µ > 0, 3λ+ 2µ > 0. This implies that Up and
Us propagate at different wave speeds, which will be referred as
compressional waves (or simply P-waves) and shear waves (or simply
S-waves), respectively. 14 / 28



Preliminaries

It is well-known that the electrodynamic Green’s tensor is given by

Gi ,j(x , t)

=
1

4πρ|x |3

{
t2
(
xjxk
|x |2

δ(t − |x |/cp) + (δjk −
xjxk
|x |2

)δ(t − |x |/cs)

)}
+

1

4πρ|x |3

{
t

(
3
xjxk
|x |2
− δjk

)
(Θ(t − |x |/cp)−Θ(t − |x |/cs))

}
.

Using the above Green’s tensor, the solution U to the inhomogeneous
Lamé system can be represented as

U(x , t) =

∫ ∞
0

∫
R3

G (x − y , t − s)f (y)g(s) dxds, x ∈ R3, t ∈ R.

Lemma

We have U(x , t) ≡ 0 for all x ∈ BR and t > Ts := T0 + (R + R0)/cs .
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Determine the spatial function: main results

Theorem

(i) The data set {U(x , t) : |x | = R, t ∈ (0,Ts)} uniquely determines the
spatial function f .
(ii) The data set of pure P- and S-waves, {Uα(x , t) : |x | = R, t ∈ (0,Tα)},
uniquely determines fα (α = p, s).

This theorem remains valid if partial data {Uα(x , t) : x ∈ Γ, t ∈ (0,Ts)}
(α = p, s) are available, where Γ ⊂ ∂BR is an arbitrary open subset. In
fact, in the Fourier domain, the vanishing of Ûα(x , ω) on Γ implies that
Ûα(x , ω) = 0 on |x | = R for each fixed ω ∈ R+, due to the analyticity of
the solution in a neighborhood of ∂BR .
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Determine the spatial function: frequency-domain approach

Introduce the functions

vp(x , ω) := d e−ikpd ·x , vs(x , ω) := d⊥ e−iksd ·x , d ∈ S2.

Then we have

−ĝ(ω)

∫
BR

f (x) · vα(x , ω) dx

=

∫
|x |=R

[
TνÛ(x , ω) · vα(x , ω)− Tνvα(x , ω) · Û(x , ω)

]
ds,

and ∫
BR

f (x) · vp(x , ω) dx = iks(2π)
3
2 f̂p(kpd),

∫
BR

f (x) · vs(x , ω) dx = iks(2π)
3
2 f̂s(ksd) · (d × d⊥).
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Determine the spatial function: time-domain approach

We apply Duhalme’s principle to U by setting

U(x , t) =

∫ t

0
V (t − s, x)g(s) ds, x ∈ R3, t > 0.

The function V then fulfills the homogeneous Lamé equation with
non-zero initial conditions

∂ttV (x , t) = −c2p ∇×∇× V (x , t) + c2s ∇(∇ · V (x , t)),

V (x , 0) = 0, ∂tV (x , 0) = f (x).

Then we decouple V into the sum of the compressional part Vp and shear
part Vs their initial condition are related to ∇fp(x) and ∇× fs(x),
respectively.
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Determine temporal functions: boundary measurements

The compactly supported function f is called a non-radiating source at the
frequency ω ∈ R+ to the Lamé system if there exists a P ∈ C3 such that
the unique radiating solution to the inhomogeneous Lamé system

∆∗u(x) + ω2ρu(x) = f (x)P, j = 1, 2, 3,

vanishes identically in R3\supp(f ).

Theorem

Suppose that f is not a non-radiating source for all ω ∈ R+. Then the
temporal function g ∈ C0([0,T0])3 can be uniquely determined by the
partial boundary measurement data {U(x , t) : x ∈ Γ, t ∈ (0,Ts)} where
Γ ⊂ ∂BR is an arbitrary subboundary with positive Lebesgue measure.
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Determine temporal functions: interior measurement

Consider the inverse problem of determining g from observations of the
solution at one fixed point x0 ∈ supp(f ).

Theorem

Let x0 ∈ BR , p > 5/2 and consider M, δ > 0 such that

Ax0,p,δ,M := {h ∈ Hp(R3) : ‖h‖Hp(R3) ≤ M, |h(x0)| ≥ δ} 6= ∅.

Then, for f ∈ Ax0,p,δ,M , it holds that

‖g‖L2(0,T )3 ≤ C ‖∂ttU(x0, ·)‖L2(0,T )3

where C depends on λ, µ, ρ, p, x0, M, R, δ and T . In particular, this
estimate implies that the data {U(x0, t) : t ∈ (0,T )} determines uniquely
the temporal function g.
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Remark

From the mathematical point of view, the recovery of source terms of the
form g(t)f (x) is the best we can expect.

There is no hope to recover general source terms of the form F (x , t).

There is even an obstruction for the recovery of source terms of the
form g1(t)f1(x) + g2(t)f2(x).
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Remark

Let χ = (χ1, χ2, χ3) with χj ∈ C∞0 (BR0 × (0,T0)), j = 1, 2, 3. Now fix

F (x , t) := ρ∂ttχ− Lλ,µχ

and consider the problem{
ρ∂ttU(x , t) = Lλ,µU(x , t) + F (x , t), (x , t) ∈ R3 × (0,+∞),
U(x , 0) = ∂tU(x , 0) = 0, x ∈ R3.

(1)

Clearly U = χ is the unique solution of (1). Assuming that χ 6= 0, from
the uniqueness of solutions of (1) one can check that F 6= 0. However
since supp(χ) ⊂ BR0 × (0,T0), we have

U(x , t) = 0, |x | = R, t ∈ (0,+∞)

and supp(F ) ⊂ BR0 × (0,T0), but F 6= 0. This proves that the data
{U(x , t) : |x | = R, t > 0} do not allow to recover general sources F (x , t)
satisfying supp(F ) ⊂ BR0 × (0,T0).
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Numerical examples

Reconstruction of f

Û(x , ω)/ĝ(ω) =

∫
BR

Ĝ (x − y) f (y)dy , |x | = R, ĝ(ω) 6= 0,

Reconstruction of g

I1(ωi ) = [W (x0,i , ωi )]−1Û(x0,i , ωi )

I2(ωi ) :=
1

M

M∑
j=1

[W (xj ,i , ωi )]−1Û(xj ,i , ωi ), i = 1, 2, · · · ,K ,
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Numerical examples

(a) f1 (b) f2

(c) fp (d) fs

Figure: The exact spatial source function f = (f1, f2) and its compressional
component fp and shear component fs .
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Numerical examples

(b) Reconstructed f1 (c) Reconstructed f2

(e) Reconstructed fp (f) Reconstructed fs

Figure: Reconstructions of f from Fourier-transformed time-domain data.
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Numerical examples

(a) g1 (a) g2 (a) g3

Figure: Reconstruction of temporal functions from I1 with 30% noise.

(a) g1 (a) g2 (a) g3

Figure: Reconstruction of temporal functions from I2 with 30% noise.
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Ongoing and future works

Inverse source problems for elastic scattering in porous medium

Inverse source problems for fluid-solid and fluid-bone interaction
problems

Inverse medium problems in elasticity
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Thank You !


