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Source scattering problems

Source scattering problems are concerned with the relationship between
radiating sources and wave fields.

o Direct problem: To determine the wave field from the given source
and the differential equation governing the wave motion.

@ Inverse problem: To determine the radiating source which produces
the measured wave field.



Applications

@ Non-destructive testing

Teleseismic estimation

@ Microseismic analysis

Biomedical imaging
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Elastic wave equations

e Equation of motion
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o Constitutive equation
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The symmetry of oj; and Sy yields
Ciit = Cuiij = Cjirs = Cijik-
In isotropic medium
Ciji = A6ij0xs + p(0ikSj1 + 6irdjic),

where A and p are Lamé parameters satisfying © > 0 and dA + 2u > 0.



Elastic wave equations

In homogeneous isotropic medium

@ Time-dependent Navier equation
pug — A%u = F(x,t) in RIxRF
@ Time-harmonic Navier equation
A*u+ pw?u = —F(x,w) in RY

Here, A* = uA + (A + p) grad div is the Lamé operator.



Direct time-harmonic scattering problems

The Navier equation

A*u+pw?u="Ff inRY

The Helmholtz decomposition
u=Vo+Vxey, V-p=0 inR3\Q,
where ¢ and 1 satisfy

Ap+k2p=0, Vx(Vxtp)—kip=0 inR3\Q.

p p
ky = w, | ke =w, 2.
PT N o “\/;

Here




Radiation condition

The Helmholtz decomposition

u=up+us inR3\Q

where 1 1
up:—gvv-u, uszk—EVx(Vx u).

The Kupradze-Sommerfeld radiation condition:

rILrgo r(0rup — ikpup) =0, rln;o r(Orus — iksus) =0, r=|x|.



Time-dependent inverse source problems

Consider the time-dependent problem
pUpe — A*U = f(x)g(t) in R xRT,
with the initial conditions
Ult=o = Utlt=0 =0 in RS>

ISP. Let f € L2(R3)3 be compactly supported in Bg for some R > 0 and
g € C(R) is supported in [0, To]. The ISP is to
@ determine the spatial function f if g is known;

@ determine temporal functions g if f is known.
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Time-dependent inverse source problems

@ Vibration phenomena in seismology

@ Teleseismic earthquake estimation
F(x) = exp(—alx — xol?)

g(t) = [1 — 27w5(t — to)*]exp(—m w5 (t — t0)?)

o Biomedical imaging

temporally Iocalized:ddd(:) f(x)
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Preliminaries

By Helmholtz decomposition, the function f € (L2(R3))3 supported in Bg,
admits a unique decomposition of the form

f(x) =Vi(x)+V xf(x), V-f=0,

where f, € HY(BRg,), fs € Heur (Bg,) also have compact support in Bg,.
Here,

Hewr (Br,) := {u : u € (L3(BRr,))?, curl u € (L*(Bg,))3}.

Suppose that S € (L?(R3))3 has a compact support in Br for some
R > 0, then the Helmholtz decomposition of S is unique.

13/28



Preliminaries

By the completeness theorem, there exist vector-valued functions Up(x, t)
and Us(x, t) such that U(x, t) can be expressed as

U=U,+Us, Up=Vu, Us=Vxu, V-u=0.
Moreover, the scalar function u, and the vector function us satisfy the
inhomogeneous wave equations

1 1 )
— Ot ug — Aug = —fa(x)g(t) in R* x (0, +00), a=p,s,
Ca Ve

together with the initial conditions
Ua|t=0 = Otlia|t—0 =0 in RS

Note that

= VA+2u)/p, =N plp, Y= A2, s = 4,

and that A +2p > 0 since u > 0, 3\ +2p > 0. This implies that U, and
Us propagate at different wave speeds, which will be referred as
compressional waves (or simply P-waves) and shear waves (or simply
S-waves), respectively. 48



Preliminaries

It is well-known that the electrodynamic Green's tensor is given by
G,"J'(X, t)

1 Xj Xk XiXk
{2 (SBate = /) + 35— Loate - /e ) |

 dmp|xf?

Xj Xk

o {t <3M2 - ajk) (O(t — [x|/cp) — Ot |x|/cs>)} -

Using the above Green’s tensor, the solution U to the inhomogeneous
Lamé system can be represented as

U(x,t) = /0 /R3 G(x—y,t—s)f(y)g(s)dxds, xeR3 teR.

We have U(x,t) =0 for all x € Bg and t > T := To + (R + Ro)/cs.
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Determine the spatial function: main results

(i) The data set {U(x,t): |x| = R, t € (0, Ts)} uniquely determines the
spatial function f.

(ii) The data set of pure P- and S-waves, {Un(x,t) : |x| = R, t € (0, T,)},
uniquely determines f, (o = p,s).

This theorem remains valid if partial data {U,(x,t) : x € I, t € (0, T5)}
(o = p, s) are available, where ' C 9Bg is an arbitrary open subset. In
fact, in the Fourier domain, the vanishing of U,(x,w) on I implies that
Un(x,w) = 0 on |x| = R for each fixed w € RT, due to the analyticity of
the solution in a neighborhood of 0Bg.
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Determine the spatial function: frequency-domain approach

Introduce the functions

—ikpd-x
’

Vp(x,w) =de ve(x,w) = dt e hdx 4§

Then we have
—g(w)/B f(x) - va(x,w)dx
= /x|_R [TylAJ(x,w) V(X w) = Tyva(x,w) - U(X,w)} ds,

and

/B F(x) - vp(x, w) dx = iks(2m)? Fo(kpd),

3
2

/B F(x) - vs(x, w) dx = iks(27)2 fo(ksd) - (d x d*).
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Determine the spatial function: time-domain approach

We apply Duhalme's principle to U by setting

t
U(x,t) = / V(t—s,x)g(s)ds, xcR3t>0.
0

The function V' then fulfills the homogeneous Lamé equation with
non-zero initial conditions

OV (x, 1) = —c3 Vx V x V(x,t) + 2 V(V - V(x,t)),
V(x,0) =0, 0:V(x,0)="f(x).
Then we decouple V' into the sum of the compressional part V,, and shear

part Vs their initial condition are related to Vf,(x) and V x fs(x),
respectively.
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Determine temporal functions: boundary measurements

The compactly supported function f is called a non-radiating source at the
frequency w € RT to the Lamé system if there exists a P € C3 such that
the unique radiating solution to the inhomogeneous Lamé system

A*u(x) +wpu(x) = F(x) P, j=1,2,3,

vanishes identically in R3\supp(f).

Suppose that f is not a non-radiating source for all w € R™. Then the
temporal function g € Co([0, To])® can be uniquely determined by the
partial boundary measurement data {U(x,t) : x € I',t € (0, Ts)} where
I C 0Bg is an arbitrary subboundary with positive Lebesgue measure.
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Determine temporal functions: interior measurement

Consider the inverse problem of determining g from observations of the
solution at one fixed point xg € supp(f).

Theorem
Let xg € Br, p > 5/2 and consider M, > 0 such that

Asopm = {h € HP(R?) - ||l porzy < M, [h(x0)| > 6} # 0.
Then, for f € Ay, ps,m, it holds that
lgll2(0,7y2 < Cll0ee U(x0, )l 20,72

where C depends on X\, 1, p, p, X0, M, R, 6 and T. In particular, this
estimate implies that the data {U(xp,t) : t € (0, T)} determines uniquely
the temporal function g.
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From the mathematical point of view, the recovery of source terms of the
form g(t)f(x) is the best we can expect.

@ There is no hope to recover general source terms of the form F(x, t).

@ There is even an obstruction for the recovery of source terms of the
form g1(t)f(x) + g (t)fa(x).

21/28



Let x = (x1, X2, x3) with x; € Cg°(Br, % (0, To)), j = 1,2,3. Now fix

F(x,t) == pOux — LauX
and consider the problem

pOnU(x,t) = Ly, U(x,t) + F(x,t), (x,t) € R3x (0,+00), (1)
U(x,0) = 9;U(x,0) =0, x & R3.

Clearly U = x is the unique solution of (1). Assuming that x # 0, from
the uniqueness of solutions of (1) one can check that F # 0. However
since supp(x) C Bg, x (0, Tp), we have

U(x,t)=0, |x]=R, te(0,+00)

and supp(F) C Bg, x (0, Tp), but F # 0. This proves that the data
{U(x,t): |x| =R, t >0} do not allow to recover general sources F(x, t)
satisfying supp(F) C Bg, % (0, Tp).
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Numerical examples

@ Reconstruction of f

Ox,w)/8(w) = . Gx—y)f(y)dy, Ix|=R, gw)#0,

@ Reconstruction of g

h(wi) = [W(x0,1,wi)] *0(xo,i, wi)

M

I2(wi) = Z[W(Xj’i,w;)]_IU(Xj’i,w;), = 1a27 T ’Ka
j=1
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Numerical examples
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Figure: The exact spatial source function f = (f;, ) and its compressional
component f, and shear component f;. ot /2




Numerical examples
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Figure: Reconstructions of f from Fourier-transformed time-domain data.
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Numerical examples
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Figure: Reconstruction of temporal functions from /i with 30% noise.
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Figure: Reconstruction of temporal functions from I with 30% noise.
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Ongoing and future works

@ Inverse source problems for elastic scattering in porous medium

@ Inverse source problems for fluid-solid and fluid-bone interaction
problems

@ Inverse medium problems in elasticity
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Thank You !



